81 research outputs found

    Administration of the antioxidant n-acetyl-cysteine in pregnant mice has long-term positive effects on metabolic and behavioral endpoints of male and female offspring prenatally exposed to a high-fat diet

    Get PDF
    A growing body of evidence suggests the consumption of high-fat diet (HFD) during pregnancy to model maternal obesity and the associated increase in oxidative stress (OS), might act as powerful prenatal stressors, leading to adult stress-related metabolic or behavioral disorders. We hypothesized that administration of antioxidants throughout gestation might counteract the negative effects of prenatal exposure to metabolic challenges (maternal HFD feeding during pregnancy) on the developing fetus. In this study, female C57BL/6J mice were fed HFD for 13 weeks (from 5-weeks of age until delivery) and were exposed to the N-acetyl-cysteine (NAC) antioxidant from 10-weeks of age until right before delivery. Body weight of the offspring was assessed following birth, up to weaning and at adulthood. The metabolic, neuroendocrine and emotional profile of the adult offspring was tested at 3-months of age. Prenatal HFD increased mother’s body weight and offspring’s weight at the time of weaning, when administered in conjunction with NAC. In females, NAC administration reduced high levels of leptin resulting from prenatal HFD. Prenatal NAC administration also resulted in greater glucose tolerance and insulin sensitivity while increasing adiponectin levels, as well as increasing exploratory behavior, an effect accompanied by reduced plasma corticosterone levels in response to restraint stress. Analysis of glutathione levels in the hypothalamus and in brown adipose tissue indicates that, while HFD administration to pregnant dams led to reduced levels of glutathione in the offspring, as in the male hypothalamus, NAC was able to revert this effect and to increase glutathione levels both in the periphery (Brown Adipose Tissue, both males and females) and in the central nervous system (males). Overall, results from this study indicate that the body redox milieu should be tightly regulated during fetal life and that buffering OS during pregnancy can have important long-term consequences on metabolic and behavioral endpoints

    Methicillin Resistance, Biofilm Formation and Resistance to BenzalkoniumChloride in Staphylococcus aureus Clinical Isolates

    Get PDF
    Purpose: To examine the resistance to benzalkonium chloride (BKC) and the distribution of biocide-resistance genes in S.aureus clinical isolates and to determine whether any correlation may exist with antibiotic resistance pattern and biofilm formation. Methods: MICs to BKC were determined in a collection of S.aureus (HA-MRSA, CA-MRSA and MSSA) both in suspension and on biofilm-embedded cells. Characteristic of the isolates (qac genes and biofilm formation) were determined by PCR and a plate assay, respectively. Results: MICs to BKC were higher among MRSA than MSSA, where the CA-MRSA showed MIC levels closer to the MSSA group. qacA/B genes were found only among HA-MRSA and conferred higher resistance to the disinfectant while smr gene did not. MBC, but not MIC, were higher for biofilm embedded vs. planktonic cells, but no correlation was found with the ability to form biofilm. Conclusion: We confirmed that presence of qacA/B but not smr confers higher resistance to BKC; MICs among MRSA were more spread compared to MSSA, suggesting that factors associated to the MR phenotype may confer resistance to BKC. Interestingly, MSSA showed higher biocide tolerance in both the planktonic and biofilm form according to the MIC/MBC fold change values. Although no correlation could be observed between biofilm thickness and biocide resistance, biofilm-embedded cells responded differently to disinfectants suggesting the current practices for efficacy testing of biocides may not be relevant in the evaluation of disinfectant efficacy against biofilm-embedded microorganisms

    Descripción epidemiológica del cáncer gástrico en chile, 2001-2008.

    Get PDF
    46 p.Introducción: El cáncer gástrico es una de las neoplasias más frecuentes en el mundo contemporáneo. En Chile, es la primera causa de muerte por tumores malignos para hombres y la tercera para mujeres. A nivel mundial es el segundo cáncer más común, con 934.000 casos nuevos por año. Su incidencia varía de un país a otro, y Chile se encuentra entre los países con las tasas más altas, junto a Japón, Costa Rica y Singapur. Objetivo: Realizar una descripción epidemiológica del cáncer gástrico en Chile durante el período 2001 – 2008 y determinar los factores sociodemográficos asociados a la mortalidad comunal y variables de calidad de datos. Metodología: Se utilizaron los archivos de estadísticas de mortalidad del Ministerio de Salud de los últimos 8 años disponibles y proyecciones anuales de población, por quinquenios de edad, sexo y comunas del INE para el periodo en estudio. Las tasas de mortalidad de cáncer gástrico (código CIE10-C16) se ajustan usando el método de estandarización indirecta por quinquenios de edad para cada sexo. La razón de mortalidad estandarizada (RME) se suaviza usando modelos de regresión bayesianos. Este estudio es parte del proyecto FONIS SA09I20016 “Atlas de mortalidad por las principales causas de muerte en Chile 2001-2008”. Resultados: Se observa una tendencia temporal descendente, con una tasa de cambio porcentual anual de -3,5 y -3,1, para hombres y mujeres respectivamente. Se identifican las regiones del Maule, Biobío, La Araucanía y de Los Ríos con RMEs de mayor riesgo En ambos sexos se observa que la RMEs es mayor cuando el ingreso, educación o nivel socioeconómico es menor. Conclusiones: La mortalidad aumenta con la edad, geográficamente se concentra en el centro sur del país, donde la mortalidad está asociada a variables sociales. Existe además una tendencia temporal descendente de la mortalidad por cáncer gástrico para ambos sexos.Palabras Clave: Atlas de Mortalidad, Cáncer Gástrico, Estudio Ecológic

    Sex-driven vulnerability in stress and drug abuse

    Get PDF
    A growing body of literature shows that a link exists between substance abuse and stress and that the crosstalk of sex hormones with the neuroendocrine system might differently prime vulnerability to drug addiction in male and female subjects. Thus, understanding the neurobiological mechanisms of addiction and the identification of sex-driven determinants in vulnerability to drug abuse may help to better devise and/or implement strategic (pharmacological, behavioural, social) interventions to prevent or face the issue of addiction. Differences between sexes can be found at all stages of life (in both the animal model and human studies) and may account for genetic, epigenetic and environmental/ hormonal factors that in turn affect the functionality of the whole organism leading also to a sex-driven differential vulnerability or resilience to non-communicable pathologies. These include the onset and precipitation of stress-related psychiatric disorders as well as “substance-related and addictive disorders” (as defined in the DSM-V). This paper reviews the scientific literature highlighting significant differences in male and female subjects in stress and neuroendocrine function and the implications for sex-dependent differential vulnerability to drug addiction

    Proteomic profiling of extracellular vesicles in synovial fluid and plasma from Oligoarticular Juvenile Idiopathic Arthritis patients reveals novel immunopathogenic biomarkers

    Get PDF
    IntroductionNew early low-invasive biomarkers are demanded for the management of Oligoarticular Juvenile Idiopathic Arthritis (OJIA), the most common chronic pediatric rheumatic disease in Western countries and a leading cause of disability. A deeper understanding of the molecular basis of OJIA pathophysiology is essential for identifying new biomarkers for earlier disease diagnosis and patient stratification and to guide targeted therapeutic intervention. Proteomic profiling of extracellular vesicles (EVs) released in biological fluids has recently emerged as a minimally invasive approach to elucidate adult arthritis pathogenic mechanisms and identify new biomarkers. However, EV-prot expression and potential as biomarkers in OJIA have not been explored. This study represents the first detailed longitudinal characterization of the EV-proteome in OJIA patients.MethodsFourty-five OJIA patients were recruited at disease onset and followed up for 24 months, and protein expression profiling was carried out by liquid chromatography-tandem mass spectrometry in EVs isolated from plasma (PL) and synovial fluid (SF) samples.ResultsWe first compared the EV-proteome of SF vs paired PL and identified a panel of EV-prots whose expression was significantly deregulated in SF. Interaction network and GO enrichment analyses performed on deregulated EV-prots through STRING database and ShinyGO webserver revealed enrichment in processes related to cartilage/bone metabolism and inflammation, suggesting their role in OJIA pathogenesis and potential value as early molecular indicators of OJIA development. Comparative analysis of the EV-proteome in PL and SF from OJIA patients vs PL from age/gender-matched control children was then carried out. We detected altered expression of a panel of EV-prots able to differentiate new-onset OJIA patients from control children, potentially representing a disease-associated signature measurable at both the systemic and local levels with diagnostic potential. Deregulated EV-prots were significantly associated with biological processes related to innate immunity, antigen processing and presentation, and cytoskeleton organization. Finally, we ran WGCNA on the SF- and PL-derived EV-prot datasets and identified a few EV-prot modules associated with different clinical parameters stratifying OJIA patients in distinct subgroups.DiscussionThese data provide novel mechanistic insights into OJIA pathophysiology and an important contribution in the search of new candidate molecular biomarkers for the disease

    Determinants of Psychosocial Difficulties Experienced by Persons with Brain Disorders: Towards a 'Horizontal Epidemiology' Approach

    Get PDF
    Background Persons with brain disorders experience significant psychosocial difficulties (PSD) in daily life, e.g. problems with managing daily routine or emotional lability, and the level of the PSD depends on social, physical and political environments, and psychologic-personal determinants. Our objective is to determine a brief set of environmental and psychologic-personal factors that are shared determinants of PSD among persons with different brain disorders. Methods Cross-sectional study, convenience sample of persons with either dementia, stroke, multiple sclerosis, epilepsy, migraine, depression, schizophrenia, substance dependence or Parkinson's disease. Random forest regression and classical linear regression were used in the analyses. Results 722 subjects were interviewed in four European countries. The brief set of determinants encompasses presence of comorbidities, health status appraisal, stressful life events, personality changes, adaptation, self-esteem, self-worth, built environment, weather, and health problems in the family. Conclusions The identified brief set of common determinants of PSD can be used to support the implementation of cross-cutting interventions, social actions and policy tools to lower PSD experienced by persons with brain disorders. This set complements a recently proposed reliable and valid direct metric of PSD for brain disorders called PARADISE24

    Acidic microenvironment plays a key role in human melanoma progression through a sustained exosome mediated transfer of clinically relevant metastatic molecules

    Get PDF
    Background: Microenvironment cues involved in melanoma progression are largely unknown. Melanoma is highly influenced in its aggressive phenotype by the changes it determinates in its microenvironment, such as pH decrease, in turn influencing cancer cell invasiveness, progression and tissue remodelling through an abundant secretion of exosomes, dictating cancer strategy to the whole host. A role of exosomes in driving melanoma progression under microenvironmental acidity was never described. Methods: We studied four differently staged human melanoma lines, reflecting melanoma progression, under microenvironmental acidic pHs pressure ranging between pH 6.0-6.7. To estimate exosome secretion as a function of tumor stage and environmental pH, we applied a technique to generate native fluorescent exosomes characterized by vesicles integrity, size, density, markers expression, and quantifiable by direct FACS analysis. Functional roles of exosomes were tested in migration and invasion tests. Then we performed a comparative proteomic analysis of acid versus control exosomes to elucidate a specific signature involved in melanoma progression. Results: We found that metastatic melanoma secretes a higher exosome amount than primary melanoma, and that acidic pH increases exosome secretion when melanoma is in an intermediate stage, i.e. metastatic non-invasive. We were thus able to show that acidic pH influences the intercellular cross-talk mediated by exosomes. In fact when exposed to exosomes produced in an acidic medium, pH naïve melanoma cells acquire migratory and invasive capacities likely due to transfer of metastatic exosomal proteins, favoring cell motility and angiogenesis. A Prognoscan-based meta-analysis study of proteins enriched in acidic exosomes, identified 11 genes (HRAS, GANAB, CFL2, HSP90B1, HSP90AB1, GSN, HSPA1L, NRAS, HSPA5, TIMP3, HYOU1), significantly correlating with poor prognosis, whose high expression was in part confirmed in bioptic samples of lymph node metastases. Conclusions: A crucial step of melanoma progression does occur at melanoma intermediate -stage, when extracellular acidic pH induces an abundant release and intra-tumoral uptake of exosomes. Such exosomes are endowed with pro-invasive molecules of clinical relevance, which may provide a signature of melanoma advancement

    Understanding the impact of brain disorders: Towards a 'horizontal epidemiology' of psychosocial difficulties and their determinants

    Full text link
    Objective To test the hypothesis of ‘horizontal epidemiology’, i.e. that psychosocial difficulties (PSDs), such as sleep disturbances, emotional instability and difficulties in personal interactions, and their environmental determinants are experienced in common across neurological and psychiatric disorders, together called brain disorders. Study Design A multi-method study involving systematic literature reviews, content analysis of patientreported outcomes and outcome instruments, clinical input and a qualitative study was carried out to generate a pool of PSD and environmental determinants relevant for nine different brain disorders, namely epilepsy, migraine, multiple sclerosis, Parkinson’s disease, stroke, dementia, depression, schizophrenia and substance dependency. Information from these sources was harmonized and compiled, and after feedback from external experts, a data collection protocol including PSD and determinants common across these nine disorders was developed. This protocol was implemented as an interview in a cross-sectional Objective To test the hypothesis of ‘horizontal epidemiology’, i.e. that psychosocial difficulties (PSDs), such as sleep disturbances, emotional instability and difficulties in personal interactions, and their environmental determinants are experienced in common across neurological and psychiatric disorders, together called brain disorders. Study Design A multi-method study involving systematic literature reviews, content analysis of patientreported outcomes and outcome instruments, clinical input and a qualitative study was carried out to generate a pool of PSD and environmental determinants relevant for nine different brain disorders, namely epilepsy, migraine, multiple sclerosis, Parkinson’s disease, stroke, dementia, depression, schizophrenia and substance dependency. Information from these sources was harmonized and compiled, and after feedback from external experts, a data collection protocol including PSD and determinants common across these nine disorders was developed. This protocol was implemented as an interview in a cross-sectionalThe PARADISE project is supported by the Coordination Theme 1 (Health) of the European Community’s FP7, Grant Agreement No. HEALTHF2- 2009-241572

    Hypoxia Modifies the Transcriptome of Human NK Cells, Modulates Their Immunoregulatory Profile, and Influences NK Cell Subset Migration

    Get PDF
    Hypoxia, which characterizes most tumor tissues, can alter the function of different immune cell types, favoring tumor escape mechanisms. In this study, we show that hypoxia profoundly acts on NK cells by influencing their transcriptome, affecting their immunoregulatory functions, and changing the chemotactic responses of different NK cell subsets. Exposure of human peripheral blood NK cells to hypoxia for 16 or 96 h caused significant changes in the expression of 729 or 1,100 genes, respectively. Gene Set Enrichment Analysis demonstrated that these changes followed a consensus hypoxia transcriptional profile. As assessed by Gene Ontology annotation, hypoxia-targeted genes were implicated in several biological processes: metabolism, cell cycle, differentiation, apoptosis, cell stress, and cytoskeleton organization. The hypoxic transcriptome also showed changes in genes with immunological relevance including those coding for proinflammatory cytokines, chemokines, and chemokine-receptors. Quantitative RT-PCR analysis confirmed the modulation of several immune-related genes, prompting further immunophenotypic and functional studies. Multiplex ELISA demonstrated that hypoxia could variably reduce NK cell ability to release IFNγ, TNFα, GM-CSF, CCL3, and CCL5 following PMA+Ionomycin or IL15+IL18 stimulation, while it poorly affected the response to IL12+IL18. Cytofluorimetric analysis showed that hypoxia could influence NK chemokine receptor pattern by sustaining the expression of CCR7 and CXCR4. Remarkably, this effect occurred selectively (CCR7) or preferentially (CXCR4) on CD56bright NK cells, which indeed showed higher chemotaxis to CCL19, CCL21, or CXCL12. Collectively, our data suggest that the hypoxic environment may profoundly influence the nature of the NK cell infiltrate and its effects on immune-mediated responses within tumor tissues
    corecore