23 research outputs found

    Crowd-Sourced Buildings Data Collection and Remote Training: New Opportunities to Engage Students in Seismic Risk Reduction

    Get PDF
    Young generations are increasingly committed to understanding disasters, and are a key player in current and future disaster risk reduction activities. The availability of online tools opened new perspectives in the organization of risk-related educational activities, in particular in earthquake-prone areas. This is the case of CEDAS (building CEnsus for seismic Damage Assessment), a pilot training activity aimed at collecting risk-related information while educating high-school students about seismic risk. During this experimental activity, students collected and elaborated crowdsourced data on the main building typologies in the proximity of their homes. In a few months, students created a dataset of valuable risk-related information, while getting familiar with the area where they live. Data collection was performed both on-site, using smartphones, and online, based on remote sensing images provided by multiple sources (e.g., Google maps and street view). This allowed all students, including those with limited mobility, to perform the activity. The CEDAS experience pointed out the potential of online tools and remote sensing images, combined with practical activities and basic training in exploratory data analysis, to engage students in an inclusive way. The proposed approach can be naturally expanded in a multi-risk perspective, and can be adjusted, eventually increasing the technical content of collected information, to the specific training and expertise of the involved students, from high-school to university level

    OGS improvements in 2012 in running the Northeastern Italy Seismic Network: the Ferrara VBB borehole seismic station

    Get PDF
    The Centro di Ricerche Sismologiche (CRS, Seismological Research Center) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data center in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of Northeastern Italy. The southwestern edge of the OGS seismic network stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML=5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on May 20, 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the Northeastern Italy Seismic Network, including details of the Ferrara VBB borehole station configuration and installation, with first results

    Installation of a very broad band borehole seismic station in Ferrara (Emilia)

    Get PDF
    The Istituto Nazionale di Geofisica e Vulcanologia (INGV) is the Italian agency devoted to monitor in real time the seismicity on the Italian territory. The seismicity in Italy is of course variable in time and space, being also very much dependant on local noise conditions. Specifically, monitoring seismicity in an alluvial basin like the Po one is a challenge, due to consistent site effects induced by soft alluvial deposits and bad coupling with the deep bedrock (Steidl et al., 1996). This problem was tackled by INGV first with the Cavola experiment (Bordoni et al., 2007), where a landslide was seismically characterized using a seismic array and also down-hole logging of P- and S-wave travel times at a borehole drilled within the array; later, with an ad hoc project in 2000-2001, with the first installation of a broad band seismic station nearby Ferrara in a borehole of 135 meters depth. Comparison of recordings with a surface seismic station indicated a noise reduction of 2 decades in power spectral density at frequencies larger than 1.0 Hz (Cocco et al., 2001). The instrumentation in Ferrara has been working for several months but after that the seismic station was discontinued due to lack of maintenance manpower. The Centro di Ricerche Sismologiche (CRS, Seismological Research Center) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy (NI) Seismic Network: it currently consists of 15 very sensitive broad band and 21 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data center in Udine (Fig. 1). Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of Northeastern Italy. Since 2002 OGS-CRS is using the Antelope software suite on several workstations plus a SUN cluster as the main tool for collecting, analyzing, archiving and exchanging seismic data, initially in the framework of the EU Interreg IIIA project “Trans-national seismological networks in the South-Eastern Alps”. SeisComP is also used as a real time data exchange server tool (Bragato et al., 2011). Among the various Italian institution with which OGS is cooperating for real time monitoring of local seismicity there is the Regione Veneto (Barnaba et al., 2012). The Southern part of the Veneto Region stands on the Po alluvial basin: earthquake localization and characterization is here again affected in this area by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in difficult noise conditions making use of borehole installations (Priolo et al., 2012) in the case of the monitoring of a local storage site for the Italian national electricity company ENEL. Following the ML=5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on May 20, 2012 at 02:03:53 UTC, a cooperation of INGV, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of the very broad band borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-East (Fig. 1), including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. As concerns the superficial geology of the area where the borehole seismic station has been installed, the outcropping materials are represented by alluvial deposits of different environments, like channel and proximal levee, inter-fluvial, meander and swamps deposits. As a consequence, the outcropping deposits are everywhere Holocene in age substantially loose or poorly compacted in the first meters-decameters and granulometrically could vary from clay to coarse sand. Two preliminary reports prepared by the Italian Department of Civil Defense (Dipartimento Nazionale di Protezione Civile) in collaboration with other institutions describe the data recorded by the national accelerometric network and complemented by additional data recorded by a number of temporary stations (Dolce et al., 2012a; Dolce et al., 2012b). These reports bear witness of strong ground motion values with an acceleration peak of about 0.9 g in the vertical component recorded during the ML=5.8 earthquake of May 29, 2012 by the Mirandola station, located at about 2 km from the epicentre. The analysis of the seismic noise recorded at some stations shows a quite pronounced peak of the horizontal-to-vertical spectral ratio (H/V) in the frequency range of 0.6 – 0.9 Hz common to all stations. Finally, strong evidence of liquefaction phenomena are reported at several sites (e.g.: S. Carlo, S. Agostino and Mirabello), most of which have been attributed to the occurrence of saturated sandy layer(s) at shallow depth deposited along an abandoned reach of the Reno River (Papathanassiou et al., 2012). Details of the station configuration and installation will be outlined, with first results

    Towards specific T–H relationships: FRIBAS database for better characterization of RC and URM buildings

    Get PDF
    FRIBAS database is an open access database (https://doi.org/10.5281/zenodo.6505442) composed of the characteristics of 312 buildings (71 masonry, 237 reinforced concrete and 4 mixed types). It collects and harmonizes data from different surveys performed on buildings in the Basilicata and Friuli Venezia Giulia regions (Southern and Northeastern Italy, respectively). Each building is defined by 37 parameters related to the building and foundation soil characteristics. The building and soil fundamental periods were experimentally estimated based on ambient noise measurements. FRIBAS gave us the opportunity to study the influence of the main characteristics of buildings and the soil-building interaction effect to their structural response. In this study, we have used the FRIBAS dataset to investigate how the building period varies as a function of construction materials and soil types. Our results motivate the need of going beyond a ‘one-fits-all’ numerical period–height (T–H) relationship for generic building typologies provided by seismic codes, towards specific T–H relationships that account for both soil and building typologies

    Site Effects in the Eastern Po Plain by Mean of Weak and Strong Earthquakes

    Get PDF
    We present the activities carried out within the S2 2012-2013 Project, funded in the frame of DPCINGV Agreement, that concerns the mid-long term Seismic Hazard Assessment in Italy on two priority areas, the Po Plain and the Southern Italy. The Po Valley, an area hitherto considered of low seismological interest, has attracted the attention of the seismological community following the events of May 20, 2012. The day after the main shock that stuck eastern Emilia in 2012, the OGS - Istituto Nazionale di Oceanografia e di Geofisica Sperimentale deployed a temporary seismographic network in the Ferrara area. All the investigated locations were set on soft soils. The large amount of collected data allowed comparison between observed PGA and theoretical predictions, ShakeMaps and attenuation laws, but the lack of a reference site during the 2012 recordings did not allow for estimating the amplification factor. In order to accomplish this task, in February 2013, a new 5 stations recording array acquired data at four of the 2012 network sites and at the Casaglia reference site, north of Ferrara, where a borehole Very Broad-Band station is coupled with a midperiod sensor at the surface. This borehole reference station made possible the estimation of site amplification of the 2013 array sites. The reference methods allowed an easier identification of the resonance frequency, which peaks appear sharper than what displayed by single-station methods (both H/V on ambient noise and earthquakes), and relative soil amplification. A large amount of original seismological data has been recorded in a poorly instrumented area, including significant events of the 2012 Emilia and 2013 Lunigiana sequences. The entire dataset of continuous waveforms has been made available on the OGS web based OASIS Database, from the earliest stages of the project. For the largest events strong-motion parameters were calculated and published on the OASIS database. Event time series and metadata (site monographs) are available similarly to the ITACA Database

    Risposta sismica delle vallate alpine: applicazione alla media Val Tagliamento

    No full text
    2005/2006This thesis consists of a site effect study in an alpine valley, where seismic action is amplified by 2D basin effects. The study area was a stretch of the Tagliamento river valley, in an area between the Tolmezzo and Cavazzo Carnico municipalities, in the north-western part of the Friuli Venezia Giulia Region (NE Italy). The valley is densely inhabited and large industrial factories are situated on the quaternary alluvial deposits, where big amplifications are expected. All the available geophysical and geotechnical data on the area has been collected and new data has been acquired. An array of six stations for earthquake recording was deployed throughout the valley for 18 months . 250 noise measurements have been recorded in the plain, with more intensive detail in the two villages of Tolmezzo and Cavazzo Carnico. Conventional methods, such as spectral ratio techniques were applied to the new earthquake recordings to infer the amplification of the valley. The horizontal to vertical component ratio of noise data (H/V) indicates the crucial period of vibration of the valley. The bedrock morphology was inspected using the joint inversion of H/V ratios and the residual gravity anomaly carried out in a former study. The lack of geological information does not allow verification of the model, but the strong convergence of the two distinct methodologies makes the structural model realistic. The great success of joint techniques, although some corrections have to be made in the calculation of Quaternary sedimentary cover, gives encouraging prospects for economical, wide-ranging surveys

    Strike-slip systems as the main tectonic features in the Plio-Quaternary kinematics of the Calabrian Arc

    No full text
    The oblique and diachronous collision of the Apennine-Maghrebian Chain with the Apulian (in the north-east) and Pelagian (in the south) continental forelands, has determined the characteristic arcuate structure of this orogen. The effects of Plio-Pleistocene deformation of the Calabrian Arc have been analysed on the basis of available reflection seismic profiles and using local timestructural maps reconstructed along the main structures. During this period, internal sectors of the Tertiary chain migrated forward on the oceanic Ionian foreland, and were cut by important strike-slip systems. These last have an orientation approximately coincident with that of the migration of the front, allowing differential movement of the different sectors of the arc, towards the weakly buoyant Ionian oceanic domain. The dataset suggests a clear connection between the development of the strike-slip systems cutting the chain and the direction of tectonic transport, towards the East during Late Messinian/Early Pliocene time, to the ESE during Late Pliocene/Early Pleistocene time, finally to the SSE during the Middle/Late Pleistocene to Present, showing a clockwise rotation in well defined stages during the kinematic evolution of the chain. The origin of the Strait of Messina during the different phases is also interpreted in the context of the analysed regional tectonic setting

    OGS improvements in 2012 in running the Northeastern Italy Seismic Network: the Ferrara VBB borehole seismic station

    No full text
    The Centro di Ricerche Sismologiche (CRS, Seismological Research Center) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data center in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of Northeastern Italy. The southwestern edge of the OGS seismic network stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML=5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on May 20, 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the Northeastern Italy Seismic Network, including details of the Ferrara VBB borehole station configuration and installation, with first results.PublishedVienna, Austria1.1. TTC - Monitoraggio sismico del territorio nazionaleope

    Installation of a very broad band borehole seismic station in Ferrara (Emilia)

    No full text
    The Istituto Nazionale di Geofisica e Vulcanologia (INGV) is the Italian agency devoted to monitor in real time the seismicity on the Italian territory. The seismicity in Italy is of course variable in time and space, being also very much dependant on local noise conditions. Specifically, monitoring seismicity in an alluvial basin like the Po one is a challenge, due to consistent site effects induced by soft alluvial deposits and bad coupling with the deep bedrock (Steidl et al., 1996). This problem was tackled by INGV first with the Cavola experiment (Bordoni et al., 2007), where a landslide was seismically characterized using a seismic array and also down-hole logging of P- and S-wave travel times at a borehole drilled within the array; later, with an ad hoc project in 2000-2001, with the first installation of a broad band seismic station nearby Ferrara in a borehole of 135 meters depth. Comparison of recordings with a surface seismic station indicated a noise reduction of 2 decades in power spectral density at frequencies larger than 1.0 Hz (Cocco et al., 2001). The instrumentation in Ferrara has been working for several months but after that the seismic station was discontinued due to lack of maintenance manpower. The Centro di Ricerche Sismologiche (CRS, Seismological Research Center) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy (NI) Seismic Network: it currently consists of 15 very sensitive broad band and 21 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data center in Udine (Fig. 1). Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of Northeastern Italy. Since 2002 OGS-CRS is using the Antelope software suite on several workstations plus a SUN cluster as the main tool for collecting, analyzing, archiving and exchanging seismic data, initially in the framework of the EU Interreg IIIA project “Trans-national seismological networks in the South-Eastern Alps”. SeisComP is also used as a real time data exchange server tool (Bragato et al., 2011). Among the various Italian institution with which OGS is cooperating for real time monitoring of local seismicity there is the Regione Veneto (Barnaba et al., 2012). The Southern part of the Veneto Region stands on the Po alluvial basin: earthquake localization and characterization is here again affected in this area by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in difficult noise conditions making use of borehole installations (Priolo et al., 2012) in the case of the monitoring of a local storage site for the Italian national electricity company ENEL. Following the ML=5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on May 20, 2012 at 02:03:53 UTC, a cooperation of INGV, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of the very broad band borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-East (Fig. 1), including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. As concerns the superficial geology of the area where the borehole seismic station has been installed, the outcropping materials are represented by alluvial deposits of different environments, like channel and proximal levee, inter-fluvial, meander and swamps deposits. As a consequence, the outcropping deposits are everywhere Holocene in age substantially loose or poorly compacted in the first meters-decameters and granulometrically could vary from clay to coarse sand. Two preliminary reports prepared by the Italian Department of Civil Defense (Dipartimento Nazionale di Protezione Civile) in collaboration with other institutions describe the data recorded by the national accelerometric network and complemented by additional data recorded by a number of temporary stations (Dolce et al., 2012a; Dolce et al., 2012b). These reports bear witness of strong ground motion values with an acceleration peak of about 0.9 g in the vertical component recorded during the ML=5.8 earthquake of May 29, 2012 by the Mirandola station, located at about 2 km from the epicentre. The analysis of the seismic noise recorded at some stations shows a quite pronounced peak of the horizontal-to-vertical spectral ratio (H/V) in the frequency range of 0.6 – 0.9 Hz common to all stations. Finally, strong evidence of liquefaction phenomena are reported at several sites (e.g.: S. Carlo, S. Agostino and Mirabello), most of which have been attributed to the occurrence of saturated sandy layer(s) at shallow depth deposited along an abandoned reach of the Reno River (Papathanassiou et al., 2012). Details of the station configuration and installation will be outlined, with first results.PublishedPotenza (Italy)1.1. TTC - Monitoraggio sismico del territorio nazionaleope
    corecore