15 research outputs found

    The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle

    Get PDF
    OBJECTIVE: Physical activity and circadian rhythms are well-established determinants of human health and disease, but the relationship between muscle activity and the circadian regulation of muscle genes is a relatively new area of research. It is unknown whether muscle activity and muscle clock rhythms are coupled together, nor whether activity rhythms can drive circadian gene expression in skeletal muscle. METHODS: We compared the circadian transcriptomes of two mouse hindlimb muscles with vastly different circadian activity patterns, the continuously active slow soleus and the sporadically active fast tibialis anterior, in the presence or absence of a functional skeletal muscle clock (skeletal muscle-specific Bmal1 KO). In addition, we compared the effect of denervation on muscle circadian gene expression. RESULTS:We found that different skeletal muscles exhibit major differences in their circadian transcriptomes, yet core clock gene oscillations were essentially identical in fast and slow muscles. Furthermore, denervation caused relatively minor changes in circadian expression of most core clock genes, yet major differences in expression level, phase and amplitude of many muscle circadian genes. CONCLUSIONS: We report that activity controls the oscillation of around 15% of skeletal muscle circadian genes independently of the core muscle clock, and we have identified the Ca2+-dependent calcineurin-NFAT pathway as an important mediator of activity-dependent circadian gene expression, showing that circadian locomotor activity rhythms drive circadian rhythms of NFAT nuclear translocation and target gene expression

    Two novel/ancient myosins in mammalian skeletal muscles: MYH14/7b and MYH15 are expressed in extraocular muscles and muscle spindles

    Get PDF
    The mammalian genome contains three ancient sarcomeric myosin heavy chain (MYH) genes, MYH14/7b, MYH15 and MYH16, in addition to the two well characterized clusters of skeletal and cardiac MYHs. MYH16 is expressed in jaw muscles of carnivores; however the expression pattern of MYH14 and MYH15 is not known. MYH14 and MYH15 orthologues are present in frogs and birds, coding for chicken slow myosin 2 and ventricular MYH, respectively, whereas only MYH14 orthologues have been detected in fish. In all species the MYH14 gene contains a microRNA, miR-499. Here we report that in rat and mouse, MYH14 and miR-499 transcripts are detected in heart, slow muscles and extraocular (EO) muscles, whereas MYH15 transcripts are detected exclusively in EO muscles. However, MYH14 protein is detected only in a minor fibre population in EO muscles, corresponding to slow-tonic fibres, and in bag fibres of muscle spindles. MYH15 protein is present in most fibres of the orbital layer of EO muscles and in the extracapsular region of bag fibres. During development, MYH14 is expressed at low levels in skeletal muscles, heart and all EO muscle fibres but disappears from most fibres, except the slow-tonic fibres, after birth. In contrast, MYH15 is absent in embryonic and fetal muscles and is first detected after birth in the orbital layer of EO muscles. The identification of the expression pattern of MYH14 and MYH15 brings to completion the inventory of the MYH isoforms involved in sarcomeric architecture of skeletal muscles and provides an unambiguous molecular basis to study the contractile properties of slow-tonic fibres in mammals

    Impact of different exposure models and spatial resolution on the long-term effects of air pollution.

    Get PDF
    Abstract Long-term exposure to air pollution has been related to mortality in several epidemiological studies. The investigations have assessed exposure using various methods achieving different accuracy in predicting air pollutants concentrations. The comparison of the health effects estimates are therefore challenging. This paper aims to compare the effect estimates of the long-term effects of air pollutants (particulate matter with aerodynamic diameter less than 10 μm, PM10, and nitrogen dioxide, NO2) on cause-specific mortality in the Rome Longitudinal Study, using exposure estimates obtained with different models and spatial resolutions. Annual averages of NO2 and PM10 were estimated for the year 2015 in a large portion of the Rome urban area (12 × 12 km2) applying three modelling techniques available at increasing spatial resolution: 1) a chemical transport model (CTM) at 1km resolution; 2) a land-use random forest (LURF) approach at 200m resolution; 3) a micro-scale Lagrangian particle dispersion model (PMSS) taking into account the effect of buildings structure at 4 m resolution with results post processed at different buffer sizes (12, 24, 52, 100 and 200 m). All the exposures were assigned at the residential addresses of 482,259 citizens of Rome 30+ years of age who were enrolled on 2001 and followed-up till 2015. The association between annual exposures and natural-cause, cardiovascular (CVD) and respiratory (RESP) mortality were estimated using Cox proportional hazards models adjusted for individual and area-level confounders. We found different distributions of both NO2 and PM10 concentrations, across models and spatial resolutions. Natural cause and CVD mortality outcomes were all positively associated with NO2 and PM10 regardless of the model and spatial resolution when using a relative scale of the exposure such as the interquartile range (IQR): adjusted Hazard Ratios (HR), and 95% confidence intervals (CI), of natural cause mortality, per IQR increments in the two pollutants, ranged between 1.012 (1.004, 1.021) and 1.018 (1.007, 1.028) for the different NO2 estimates, and between 1.010 (1.000, 1.020) and 1.020 (1.008, 1.031) for PM10, with a tendency of larger effect for lower resolution exposures. The latter was even stronger when a fixed value of 10 μg/m3 is used to calculate HRs. Long-term effects of air pollution on mortality in Rome were consistent across different models for exposure assessment, and different spatial resolutions

    Specialist laboratory networks as preparedness and response tool - The emerging viral diseases-expert laboratory network and the chikungunya outbreak, Thailand, 2019

    Get PDF
    We illustrate the potential for specialist laboratory networks to be used as preparedness and response tool through rapid collection and sharing of data. Here, the Emerging Viral Diseases-Expert Laboratory Network (EVD-LabNet) and a laboratory assessment of chikungunya virus (CHIKV) in returning European travellers related to an ongoing outbreak in Thailand was used for this purpose. EVD-LabNet rapidly collected data on laboratory requests, diagnosed CHIKV imported cases and sequences generated, and shared among its members and with the European Centre for Disease Prevention and Control. Data across the network showed an increase in CHIKV imported cases during 1 October 2018-30 April 2019 vs the same period in 2018 (172 vs 50), particularly an increase in cases known to be related to travel to Thailand (72 vs 1). Moreover, EVD-LabNet showed that strains were imported from Thailand that cluster with strains of the ECSA-IOL E1 A226 variant emerging in Pakistan in 2016 and involved in the 2017 outbreaks in Italy. CHIKV diagnostic requests increased by 23.6% between the two periods. The impact of using EVD-LabNet or similar networks as preparedness and response tool could be improved by standardisation of the collection, quality and mining of data in routine laboratory management systems

    Astrocyte-Microglia Cooperation in the Expression of a Pro-Inflammatory Phenotype.

    No full text
    Glial cells not only serve supportive and nutritive roles for neurons, but also respond to protracted stress and insults by up-regulating inflammatory processes. The complexity of studying glial activation in vivo has led to the widespread adoption of in vitro approaches, for example the use of the bacterial toxin lipopolysaccharide (LPS, a ligand for toll-like receptor 4 (TLR4)) as an experimental model of glial activation. Astrocyte cultures frequently contain minor numbers of microglia, which can complicate interpretation of responses. In the present study, enriched (<5% microglia) astrocytes cultured from neonatal rat cortex and spinal cord were treated with the lysosomotropic agent L-leucyl-L-leucine methyl ester to eliminate residual microglia, as confirmed by loss of microglia-specific marker genes. L-Leucyl-L-leucine methyl ester treatment led to a loss of LPS responsiveness, in terms of nitric oxide and cytokine gene up-regulation and mediator (pro-inflammatory cytokines, nitric oxide) output into the culture medium. Surprisingly, when astrocyte/microglia co-cultures were then reconstituted by adding defined numbers of purified microglia to microglia-depleted astrocytes, the LPS-induced up-regulation of pro-inflammatory gene and mediator output far exceeded that observed from cultures containing the same numbers of microglia only. Similar behaviors were found when examining interleukin-1\u3b2 release caused by activation of the purinergic P2X7 receptor. Given that astrocytes greatly outnumber microglia in the central nervous system, these data suggest that a similar interaction between microglia and astrocytes in vivo may be an important element in the evolution of an inflammatory pathology

    Co-ultramicronized palmitoylethanolamide/luteolin promotes the maturation of oligodendrocyte precursor cells

    No full text
    Oligodendrocytes have limited ability to repair the damage to themselves or to other nerve cells, as seen in demyelinating diseases like multiple sclerosis. An important strategy may be to replace the lost oligodendrocytes and/or promote the maturation of undifferentiated oligodendrocyte precursor cells (OPCs). Recent studies show that a composite of co-ultramicronized N-palmitoylethanolamine (PEA) and luteolin (co-ultramicronized PEA/luteolin, 10:1 by mass) is efficacious in improving outcome in experimental models of spinal cord and traumatic brain injuries. Here, we examined the ability of co-ultramicronized PEA/luteolin to promote progression of OPCs into a more differentiated phenotype. OPCs derived from newborn rat cortex were placed in culture and treated the following day with 10 \u3bcM co-ultramicronized PEA/luteolin. Cells were collected 1, 4 and 8 days later and analyzed for expression of myelin basic protein (MBP). qPCR and Western blot analyses revealed a time-dependent increase in expression of both mRNA for MBP and MBP content, along with an increased expression of genes involved in lipid biogenesis. Ultramicronized PEA or luteolin, either singly or in simple combination, were ineffective. Further, co-ultramicronized PEA/luteolin promoted morphological development of OPCs and total protein content without affecting proliferation. Co-ultramicronized PEA/luteolin may represent a novel pharmacological strategy to promote OPC maturation

    The Effect of C-Phycocyanin on Microglia Activation Is Mediated by Toll-like Receptor 4

    No full text
    The blue-green alga Spirulina platensis is rich in phycocyanins, that exhibit a wide range of pharmacological actions. C-phycocyanin (C-PC), in particular, possesses hepatoprotective, nephroprotective, antioxidant, and anticancer effects. Furthermore, several studies have reported both anti- and proinflammatory properties of this pigment. However, the precise mechanism(s) of action of C-PC in these processes remain largely unknown. Therefore, here we explored the C-PC effect in in vitro microglia activation. The effect of C-PC on the expression and release of IL-1&beta; and TNF-&alpha; and the activation of NF-&kappa;B was examined in primary microglia by real-time PCR, ELISA, and immunofluorescence. Treatment with C-PC up-regulated the expression and release of IL-1&beta; and TNF-&alpha;. C-PC also promoted the nuclear translocation of the NF-&kappa;B transcription factor. Then, to elucidate the molecular mechanisms for the immunoregulatory function of C-PC, we focused on investigating the role of Toll-like receptor 4 (TLR4). Accordingly, several TLR4 inhibitors have been used. Curcumin, ciprofloxacin, L48H37, and CLI-095 that suppresses specifically TLR4 signaling, blocked IL-1&beta; and TNF-&alpha;. Overall, these results indicate the immunomodulatory effect of C-PC in microglia cultures and show for the first time that the molecular mechanism implicated in this effect may involve TLR4 activation

    Toll-Like Receptors 2, -3 and -4 Prime Microglia but not Astrocytes Across Central Nervous System Regions for ATP-Dependent Interleukin-1\u3b2 Release

    No full text
    Interleukin-1 beta (IL-1 beta) is a crucial mediator in the pathogenesis of inflammatory diseases at the periphery and in the central nervous system (CNS). Produced as an unprocessed and inactive pro-form which accumulates intracellularly, release of the processed cytokine is strongly promoted by ATP acting at the purinergic P2X(7) receptor (P2X(7)R) in cells primed with lipopolysaccharide (LPS), a Toll-like receptor (TLR) 4 ligand. Microglia are central to the inflammatory process and a major source of IL-1 beta when activated. Here we show that purified (> 99%) microglia cultured from rat cortex, spinal cord and cerebellum respond robustly to ATP-dependent IL-1 beta release, upon priming with a number of TLR isoform ligands (zymosan and Pam3CSK4 for TLR2, poly(I:C) for TLR3). Cytokine release was prevented by a P2X(7)R antagonist and inhibitors of stress-activated protein kinases. Enriched astrocytes (<= 5% microglia) from these CNS regions displayed responses qualitatively similar to microglia but became unresponsive upon eradication of residual microglia with the lysosomotropic agent Leu-Leu-OMe. Activation of multiple TLR isoforms in nervous system pathology, coupled with elevated extracellular ATP levels and subsequent P2X(7)R activation may represent an important route for microglia-derived IL-1 beta. This phenomenon may have important consequences for neuroinflammation and its position to the common pathology of CNS diseases

    Heart morphogenesis is not affected by overexpression of the Sh3bgr gene mapping to the Down syndrome heart critical region

    No full text
    Congenital heart disease (CHD) is the most common birth defect in humans and is present in 40% of newborns affected by Down syndrome (DS). The SH3BGR gene maps to the DS-CHD region and is a potential candidate for the pathogenesis of CHD, since it is selectively expressed in cardiac and skeletal muscle. To determine whether overexpression of Sh3bgr in the murine heart may cause abnormal cardiac development, we have generated transgenic mice using a cardiac- and skeletal-muscle-specific promoter to drive the expression of a Sh3bgr transgene. We report here that heart morphogenesis is not affected by overexpression of Sh3bgr
    corecore