11 research outputs found

    Clustering of Intermediate Luminosity X-ray selected AGN at z~3

    Full text link
    We present the first clustering results of X-ray selected AGN at z~3. Using Chandra X-ray imaging and UVR optical colors from MUSYC photometry in the ECDF-S field, we selected a sample of 58 z~3 AGN candidates. From the optical data we also selected 1385 LBG at 2.8<z< 3.8 with R<25.5. We performed auto-correlation and cross-correlation analyses, and here we present results for the clustering amplitudes and dark matter halo masses of each sample. For the LBG we find a correlation length of r_0,LBG = 6.7 +/- 0.5 Mpc, implying a bias value of 3.5 +/- 0.3 and dark matter (DM) halo masses of log(Mmin/Msun) = 11.8 +/- 0.1. The AGN-LBG cross-correlation yields r_0,AGN-LBG = 8.7 +/- 1.9 Mpc, implying for AGN at 2.8<z<3.8 a bias value of 5.5 +/- 2.0 and DM halo masses of log(Mmin/Msun) = 12.6 +0.5/-0.8. Evolution of dark matter halos in the Lambda CDM cosmology implies that today these z~3 AGN are found in high mass galaxies with a typical luminosity of 7+4/-2 L*.Comment: Accepted for publication in ApJ Letters. 4 pages, 4 figures (1 in color

    Galaxy Zoo: Motivations of Citizen Scientists

    Full text link
    Citizen science, in which volunteers work with professional scientists to conduct research, is expanding due to large online datasets. To plan projects, it is important to understand volunteers' motivations for participating. This paper analyzes results from an online survey of nearly 11,000 volunteers in Galaxy Zoo, an astronomy citizen science project. Results show that volunteers' primary motivation is a desire to contribute to scientific research. We encourage other citizen science projects to study the motivations of their volunteers, to see whether and how these results may be generalized to inform the field of citizen science.Comment: 41 pages, including 6 figures and one appendix. In press at Astronomy Education Revie

    Finding Rare AGN: X-ray Number Counts of Chandra Sources in Stripe 82

    Full text link
    We present the first results of a wide area X-ray survey within the Sloan Digital Sky Survey (SDSS) Stripe 82, a 300 deg2^2 region of the sky with a substantial investment in multi-wavelength coverage. We analyzed archival {\it Chandra} observations that cover 7.5 deg2^2 within Stripe 82 ("Stripe 82 ACX"), reaching 4.5σ\sigma flux limits of 7.9×10−16\times10^{-16}, 3.4×10−15\times10^{-15} and 1.8×10−15\times10^{-15} erg s−1^{-1} cm−2^{-2} in the soft (0.5-2 keV), hard (2-7 keV) and full (0.5-7 keV) bands, to find 774, 239 and 1118 X-ray sources, respectively. Three hundred twenty-one sources are detected only in the full band and 9 sources are detected solely in the soft band. Utilizing data products from the {\it Chandra} Source Catalog, we construct independent LogNN-LogSS relationships, detailing the number density of X-ray sources as a function of flux, which show general agreement with previous {\it Chandra} surveys. We compare the luminosity distribution of Stripe 82 ACX with the smaller, deeper CDF-S + E-CDFS surveys and with {\it Chandra}-COSMOS, illustrating the benefit of wide-area surveys in locating high luminosity AGN. We also investigate the differences and similarities of X-ray and optical selection to uncover obscured AGN in the local Universe. Finally, we estimate the population of AGN we expect to find with increased coverage of 100 deg2^2 or 300 deg2^2, which will provide unprecedented insight into the high redshift, high luminosity regime of black hole growth currently under-represented in X-ray surveys.Comment: Accepted for publication in MNRAS, 15 pages, 6 Figures, 2 Table

    The 31 Deg2^2 Release of the Stripe 82 X-ray Survey: The Point Source Catalog

    Get PDF
    We release the next installment of the Stripe 82 X-ray survey point-source catalog, which currently covers 31.3 deg2^2 of the Sloan Digital Sky Survey (SDSS) Stripe 82 Legacy field. In total, 6181 unique X-ray sources are significantly detected with {\it XMM-Newton} (>5σ>5\sigma) and {\it Chandra} (>4.5σ>4.5\sigma). This catalog release includes data from {\it XMM-Newton} cycle AO 13, which approximately doubled the Stripe 82X survey area. The flux limits of the Stripe 82X survey are 8.7×10−168.7\times10^{-16} erg s−1^{-1} cm−2^{-2}, 4.7×10−154.7\times10^{-15} erg s−1^{-1} cm−2^{-2}, and 2.1×10−152.1\times10^{-15} erg s−1^{-1} cm−2^{-2} in the soft (0.5-2 keV), hard (2-10 keV), and full bands (0.5-10 keV), respectively, with approximate half-area survey flux limits of 5.4×10−155.4\times10^{-15} erg s−1^{-1} cm−2^{-2}, 2.9×10−142.9\times10^{-14} erg s−1^{-1} cm−2^{-2}, and 1.7×10−141.7\times10^{-14} erg s−1^{-1} cm−2^{-2}. We matched the X-ray source lists to available multi-wavelength catalogs, including updated matches to the previous release of the Stripe 82X survey; 88\% of the sample is matched to a multi-wavelength counterpart. Due to the wide area of Stripe 82X and rich ancillary multi-wavelength data, including coadded SDSS photometry, mid-infrared {\it WISE} coverage, near-infrared coverage from UKIDSS and VHS, ultraviolet coverage from {\it GALEX}, radio coverage from FIRST, and far-infrared coverage from {\it Herschel}, as well as existing ∼\sim30\% optical spectroscopic completeness, we are beginning to uncover rare objects, such as obscured high-luminosity AGN at high-redshift. The Stripe 82X point source catalog is a valuable dataset for constraining how this population grows and evolves, as well as for studying how they interact with the galaxies in which they live.Comment: accepted for publication in ApJ; 23 pages (emulateapj

    The 31 Deg^2 Release of the Stripe 82 X-Ray Survey: The Point Source Catalog

    Get PDF
    We release the next installment of the Stripe 82 X-ray survey point-source catalog, which currently covers 31.3 deg^2 of the Sloan Digital Sky Survey (SDSS) Stripe 82 Legacy field. In total, 6181 unique X-ray sources are significantly detected with XMM-Newton (>5σ) and Chandra (>4.5σ). This catalog release includes data from XMM-Newton cycle AO 13, which approximately doubled the Stripe 82X survey area. The flux limits of the Stripe 82X survey are 8.7 × 10^(−16) erg s^(−1) cm^(−2), 4.7 × 10^(−15) erg s^(−1) cm^(−2), and 2.1 × 10^(−15) erg s^(−1) cm^(−2) in the soft (0.5–2 keV), hard (2–10 keV), and full bands (0.5–10 keV), respectively, with approximate half-area survey flux limits of 5.4 × 10^(−15) erg s^(−1) cm^(−2), 2.9 × 10^(−14) erg s^(−1) cm^(−2), and 1.7 × 10^(−14) erg s^(−1) cm^(−2). We matched the X-ray source lists to available multi-wavelength catalogs, including updated matches to the previous release of the Stripe 82X survey; 88% of the sample is matched to a multi-wavelength counterpart. Due to the wide area of Stripe 82X and rich ancillary multi-wavelength data, including coadded SDSS photometry, mid-infrared WISE coverage, near-infrared coverage from UKIDSS and VISTA Hemisphere Survey, ultraviolet coverage from GALEX, radio coverage from FIRST, and far-infrared coverage from Herschel, as well as existing ~30% optical spectroscopic completeness, we are beginning to uncover rare objects, such as obscured high-luminosity active galactic nuclei at high-redshift. The Stripe 82X point source catalog is a valuable data set for constraining how this population grows and evolves, as well as for studying how they interact with the galaxies in which they live

    Finding rare AGN: XMM–Newton and Chandra observations of SDSS Stripe 82

    No full text
    We have analyzed the {\it XMM-Newton} and {\it Chandra} data overlapping ∼\sim16.5 deg2^2 of Sloan Digital Sky Survey Stripe 82, including ∼\sim4.6 deg2^2 of proprietary {\it XMM-Newton} data that we present here. In total, 3362 unique X-ray sources are detected at high significance. We derive the {\it XMM-Newton} number counts and compare them with our previously reported {\it Chandra} LogNN-LogSS relations and other X-ray surveys. The Stripe 82 X-ray source lists have been matched to multi-wavelength catalogs using a maximum likelihood estimator algorithm. We discovered the highest redshift (z=5.86z=5.86) quasar yet identified in an X-ray survey. We find 2.5 times more high luminosity (Lx≥1045_x \geq 10^{45} erg s−1^{-1}) AGN than the smaller area {\it Chandra} and {\it XMM-Newton} survey of COSMOS and 1.3 times as many identified by XBo\"otes. Comparing the high luminosity AGN we have identified with those predicted by population synthesis models, our results suggest that this AGN population is a more important component of cosmic black hole growth than previously appreciated. Approximately a third of the X-ray sources not detected in the optical are identified in the infrared, making them candidates for the elusive population of obscured high luminosity AGN in the early universe.Comment: 25 pages, 18 figures, 5 tables. accepted for publication in MNRAS. Catalogs can be downloaded at http://www.astro.yale.edu/lamassa/s82x.htm
    corecore