3,126 research outputs found

    A 125 GeV SM-like Higgs in the MSSM and the γγ\gamma \gamma rate

    Get PDF
    We consider the possibility of a Standard Model (SM)-like Higgs in the context of the Minimal Supersymmetric Standard Model (MSSM), with a mass of about 125 GeV and with a production times decay rate into two photons which is similar or somewhat larger than the SM one. The relatively large value of the SM-like Higgs mass demands stops in the several hundred GeV mass range with somewhat large mixing, or a large hierarchy between the two stop masses in the case that one of the two stops is light. We find that, in general, if the heaviest stop mass is smaller than a few TeV, the rate of gluon fusion production of Higgs bosons decaying into two photons tends to be somewhat suppressed with respect to the SM one in this region of parameters. However, we show that an enhancement of the photon decay rate may be obtained for light third generation sleptons with large mixing, which can be naturally obtained for large values of tan⁥ÎČ\tan\beta and sizable values of the Higgsino mass parameter.Comment: 14 pages, 4 figures. Corrected small typos and added reference

    CPsuperH2.3: an Updated Tool for Phenomenology in the MSSM with Explicit CP Violation

    Full text link
    We describe the Fortran code CPsuperH2.3, which incorporates the following updates compared with its predecessor CPsuperH2.0. It implements improved calculations of the Higgs-boson masses and mixing including stau contributions and finite threshold effects on the tau-lepton Yukawa coupling. It incorporates the LEP limits on the processes e^+ e^- to H_i Z, H_i H_j and the CMS limits on H_i to tau^+ tau^- obtained from 4.6/fb of data at a centre-of-mass energy of 7 TeV. It also includes the decay mode H_i to Z gamma and the Schiff-moment contributions to the electric dipole moments of Mercury and Radium225, with several calculational options for the case of Mercury. These additions make CPsuperH2.3 a suitable tool for analyzing possible CP-violating effects in the MSSM in the era of the LHC and a new generation of EDM experimentsComment: 31 pages, 10 eps figures, 7 tables; H to Z gamma and SM BRs included; To appear in CPC; Typos in Eq.(A.2) corrected;The program may be obtained from http://www.hep.man.ac.uk/u/jslee/CPsuperH.html, or by contacting the first author at [email protected]; A comment added after Eq.(15) and a typo in Eq.(A.4) correcte

    CP-Violating MSSM Higgs Bosons in the Light of LEP 2

    Get PDF
    In the MSSM, the CP parities of the neutral Higgs bosons may be mixed by radiative effects induced by explicit CP violation in the third generation of squarks. To allow for this possibility, we argue that the charged Higgs-boson mass and tan(beta) should be used to parametrize the MSSM Higgs sector. We introduce a new benchmark scenario of maximal CP violation appropriate for direct searches of CP-violating MSSM Higgs bosons. We show that the bounds established by LEP 2 on the MSSM Higgs sector may be substantially relaxed at low and intermediate values of tan(beta) in the presence of CP violation, and comment on possible Higgs boson signatures at LEP 2 within this framework.Comment: 16 pages, LaTeX, 4 encapsulated figure

    Neutrino Masses, Mixing Angles and the Unification of Couplings in the MSSM

    Get PDF
    In the light of the gathering evidence for ΜΌ−Μτ\nu_{\mu}-\nu_{\tau} neutrino oscillations, coming in particular from the Super-Kamiokande data on atmospheric neutrinos, we re-analyze the unification of gauge and Yukawa couplings within the minimal supersymmetric extension of the Standard Model (MSSM). Guided by a range of different grand-unified models, we stress the relevance of large mixing in the lepton sector for the question of bottom-tau Yukawa coupling unification. We also discuss the dependence of the favoured value of tan⁥ÎČ\tan\beta on the characteristics of the high-energy quark and lepton mass matrices. In particular, we find that, in the presence of large lepton mixing, Yukawa unification can be achieved for intermediate values of tan⁥ÎČ\tan\beta that were previously disfavoured. The renormalization-group sensitivity to the structures of different mass matrices may enable Yukawa unification to serve as a useful probe of GUT models.Comment: 29 pages, latex, 5 figure

    Renormalization-Group-Improved Effective Potential for the MSSM Higgs Sector with Explicit CP Violation

    Get PDF
    We perform a systematic study of the one-loop renormalization-group-improved effective potential of the minimal supersymmetric extension of the Standard Model (MSSM), including CP violation induced radiatively by soft trilinear interactions related to squarks of the third generation. We calculate the charged and neutral Higgs-boson masses and couplings, including the two-loop logarithmic corrections that arise from QCD effects, as well as those associated with the top- and bottom-quark Yukawa couplings. We also include the potentially large two-loop non-logarithmic corrections induced by one-loop threshold effects on the top- and bottom-quark Yukawa couplings, due to the decoupling of the third-generation squarks. Within this minimal CP-violating framework, the charged and neutral Higgs sectors become intimately related to one another and therefore require a unified treatment. In the limit of a large charged Higgs-boson mass, M_{H^+} >> M_Z, the lightest neutral Higgs boson resembles that in the Standard Model (SM), and CP violation occurs only in the heavy Higgs sector. Our analysis shows that sizeable radiative effects of CP violation in the Higgs sector of the MSSM may lead to significant modifications of previous studies for Higgs-boson searches at LEP2, the Tevatron and the LHC. In particular, CP violation could enable a relatively light Higgs boson to escape detection at LEP2.Comment: 55 pages, LaTeX, 9 eps figures, typo in (A.12) eliminate

    CP Violation in Heavy MSSM Higgs Scenarios

    Get PDF
    We introduce and explore new heavy Higgs scenarios in the Minimal Supersymmetric Standard Model (MSSM) with explicit CP violation, which have important phenomenological implications that may be testable at the LHC. For soft supersymmetry-breaking scales M_S above a few TeV and a charged Higgs boson mass M_H+ above a few hundred GeV, new physics effects including those from explicit CP violation decouple from the light Higgs boson sector. However, such effects can significantly alter the phenomenology of the heavy Higgs bosons while still being consistent with constraints from low-energy observables, for instance electric dipole moments. To consider scenarios with a charged Higgs boson much heavier than the Standard Model (SM) particles but much lighter than the supersymmetric particles, we revisit previous calculations of the MSSM Higgs sector. We compute the Higgs boson masses in the presence of CP violating phases, implementing improved matching and renormalization group (RG) effects, as well as two-loop RG effects from the effective two-Higgs Doublet Model (2HDM) scale M_H+ to the scale M_S. We illustrate the possibility of non-decoupling CP-violating effects in the heavy Higgs sector using new benchmark scenarios named CPX4LHC.Comment: 39 pages, 17 figures, LaTeX, typos correcte

    Supersymmetric CP-violating Currents and Electroweak Baryogenesis

    Get PDF
    In this work we compute the CP-violating currents of the right-handed stops and Higgsinos, induced by the presence of non-trivial vacuum expectation values of the Higgs fields within the context of the minimal supersymmetric extension of the Standard Model (MSSM) with explicit CP-violating phases. Using the Keldysh formalism, we perform the computation of the currents at finite temperature, in an expansion of derivatives of the Higgs fields. Contrary to previous works, we implement a resummation of the Higgs mass insertion effects to all orders in perturbation theory. While the components of the right-handed stop current j^\mu_{\widetilde t_R} become proportional to the difference H_2 \partial^{\mu}H_1-H_1 \partial^{\mu} H_2 (suppressed by \Delta\beta), the Higgsino currents, j^\mu_{\widetilde{H}_i}, present contributions proportional to both H_2 \partial^{\mu}H_1\pm H_1 \partial^{\mu} H_2. For large values of the charged Higgs mass and moderate values of \tan\beta the contribution to the source proportional to H_2 \partial^{\mu}H_1+H_1 \partial^{\mu} H_2 in the diffusion equations become sizeable, although it is suppressed by the Higgsino number violating interaction rate \Gamma_\mu^{-1/2}. For small values of the wall velocity, 0.04\simlt v_\omega \simlt 0.1, the total contribution leads to acceptable values of the baryon asymmetry for values of the CP-violating phases \phi_{CP} in the range 0.04\simlt|\sin\phi_{CP}|\simlt 1. Finally, we comment on the relevance of the latest results of Higgs searches at LEP2 for the mechanism of electroweak baryogenesis within the MSSM.Comment: 27 pages, 4 figures, latex2e. Typo corrected and references adde

    Report of the Higgs Working Group of the Tevatron Run 2 SUSY/Higgs Workshop

    Get PDF
    This report presents the theoretical analysis relevant for Higgs physics at the upgraded Tevatron collider and documents the Higgs Working Group simulations to estimate the discovery reach in Run 2 for the Standard Model and MSSM Higgs bosons. Based on a simple detector simulation, we have determined the integrated luminosity necessary to discover the SM Higgs in the mass range 100-190 GeV. The first phase of the Run 2 Higgs search, with a total integrated luminosity of 2 fb-1 per detector, will provide a 95% CL exclusion sensitivity comparable to that expected at the end of the LEP2 run. With 10 fb-1 per detector, this exclusion will extend up to Higgs masses of 180 GeV, and a tantalizing 3 sigma effect will be visible if the Higgs mass lies below 125 GeV. With 25 fb-1 of integrated luminosity per detector, evidence for SM Higgs production at the 3 sigma level is possible for Higgs masses up to 180 GeV. However, the discovery reach is much less impressive for achieving a 5 sigma Higgs boson signal. Even with 30 fb-1 per detector, only Higgs bosons with masses up to about 130 GeV can be detected with 5 sigma significance. These results can also be re-interpreted in the MSSM framework and yield the required luminosities to discover at least one Higgs boson of the MSSM Higgs sector. With 5-10 fb-1 of data per detector, it will be possible to exclude at 95% CL nearly the entire MSSM Higgs parameter space, whereas 20-30 fb-1 is required to obtain a 5 sigma Higgs discovery over a significant portion of the parameter space. Moreover, in one interesting region of the MSSM parameter space (at large tan(beta)), the associated production of a Higgs boson and a b b-bar pair is significantly enhanced and provides potential for discovering a non-SM-like Higgs boson in Run 2.Comment: 185 pages, 124 figures, 55 table

    Collider Probes of the MSSM Higgs Sector with Explicit CP Violation

    Get PDF
    We investigate the hadron collider phenomenology of the Minimal Supersymmetric Standard Model (MSSM) with explicit CP violation for Higgs bosons that can be observed in Standard Model search channels: W/ZH(->b-bbar) at the Tevatron, and gg->H(->gamma-gamma), t-tbar-H(->b-bbar) and WW->H(->tau+tau-) at the LHC. Our numerical analysis is based on a benchmark scenario proposed earlier called CPX, which has been designed to showcase the effects of CP violation in the MSSM, and on several variant benchmarks. In most of the CPX parameter space, these hadron colliders will find one of the neutral MSSM Higgs bosons. However, there are small regions of parameter space in which none of the neutral Higgs bosons can be detected in the standard channels at the Tevatron and the LHC. This occurs because the neutral Higgs boson with the largest coupling to W and Z bosons decays predominantly into either two lighter Higgs bosons or a Higgs boson and a gauge boson, whilst the lighter Higgs boson has only small couplings to the W and Z bosons and the top quark. For other choices of CP-violating parameters, all three neutral Higgs bosons can have significant couplings to W and Z bosons, producing overlapping signatures: these may or may not be distinguishable from backgrounds. The existence of these regions of parameters provides a strong motivation for a detailed experimental simulation of these channels.Comment: 42 pages, 13 figure

    A New Source for Electroweak Baryogenesis in the MSSM

    Get PDF
    One of the most experimentally testable explanations for the origin of the baryon asymmetry of the universe is that it was created during the electroweak phase transition, in the minimal supersymmetric standard model. Previous efforts have focused on the current for the difference of the two Higgsino fields, H1−H2H_1-H_2, as the source of biasing sphalerons to create the baryon asymmetry. We point out that the current for the orthogonal linear combination, H1+H2H_1+H_2, is larger by several orders of magnitude. Although this increases the efficiency of electroweak baryogenesis, we nevertheless find that large CP-violating angles ≄0.15\ge 0.15 are required to get a large enough baryon asymmetry.Comment: 4 pages, 2 figures; numerical error corrected, which implies that large CP violation is needed to get observed baryon asymmetry. We improved solution of diffusion equations, and computed more accurate values for diffusion coefficient and damping rate
    • 

    corecore