196 research outputs found

    Temperature-Dependent Thévenin Model of a Li-Ion Battery for Automotive Management and Control

    Get PDF
    This paper focuses on the analysis of Li-ion battery behavior at different temperatures through the Thévenin electrical circuit model. First, evaluations for both steady-state and dynamic battery applications are provided, then an overview of the different battery models to describe their dynamic behavior is analyzed. The focus is dedicated to the double polarization Thévenin-based equivalent circuit model since it represents an optimal trade-off between accuracy and computation effort, which justifies its implementation in a Battery Management System (BMS) for automotive real-time monitoring and control. The model is composed of a voltage source, one series resistor and two series RC blocks. The Hybrid Pulse Power Characterization test (HPPC) is performed inside a climatic chamber to extract the electrical parameters of the model and their dependency from both temperature and State Of Charge (SOC). The load-current effects on the battery performance are not considered for the simplicity and lightness of the presented model. The presented procedure has broader validity and is mostly independent of cell format and Li-ion chemistry, despite a specific cylindrical battery cell is chosen for the study. The results of the test are suitable for the future implementation of a proper algorithm for SOC and State Of Health SOH estimations. Moreover, they provide an effective electrical and thermal characterization of the cell to evaluate the heat generation rate inside the cell

    Dynamic Electro-Thermal Li-ion Battery Model for Control Algorithms

    Get PDF
    This paper presents a fast and effective approach to evaluate the heat generation of a Li-ion battery system. The thermal characterization of Li-ion batteries is a relevant topic for the correct monitoring of the battery pack. In particular, a reduced-order model, that estimates the thermal dynamics of a Li-ion battery cell, is reported. The proposed approach relies on the definition of a boundary-value problem for heat conduction, in the form of a linear partial differential equation with the integration of Equivalent Circuit Model. The model is based on the double polarization Thévenin equivalent circuit model since it represents an optimal trade-off between accuracy and computation effort, which justifies its implementation in a Battery Management System (BMS) for automotive real-time monitoring and control. The resulting model predicts the temperature dynamics at the external surface in relation with the rate of the internal heat generation. In this paper, the model is applied to estimate the temperature of a cylindrical cell during a discharging transient and it uses electrical data acquired from experimental tests and is validated Computational fluid dynamics simulation. The results of the test are suitable for the future implementation of a proper algorithm for State of Charge SOC and State of Health SOH estimations

    Electrothermal battery pack model for automotive application: Design and validation

    Get PDF
    Thermal modeling of the battery is an important way to understand how the design and operating variables affect the thermal response during its operation. This paper presents a method for modeling the electrical and thermal behavior of a battery pack, starting from the characterization of the single Lithium-ion battery cell up to extend its validity to module and pack level. The model takes into account both the reversible entropic heat generation and the irreversible resistive heat to predict the temperature of the battery. A coupled CFD and thermal analysis on an elementary module is proposed and experimentally tested to validate the results obtained from the proposed model. Furthermore, the experimental test will verify the effectiveness of air cooling

    Non-linear kalman filters for battery state of charge estimation and control

    Get PDF
    In this paper, two different non-linear Kalman Filters for lithium-ion battery state of charge estimation are presented and compared. Nowadays, lithium-ion batteries are extensively used for hybrid and electric vehicles; in such applications, cells are assembled in module and pack to achieve high performance. At this scope, a Battery Management Systems BMS is required to control each cell and improve the battery pack performance, safety, reliability, and lifecycle. One of the major tasks a BMS must fulfill is an accurate online estimation of the State Of Charge (SOC) of the battery pack. In this paper, the Extended Kalman Filter and Sigma Points Kalman filter are developed and compared. A battery equivalent circuit model has been chosen to have a good compromise between complexity and accuracy and model parameters have been identified from Hybrid Pulse Power Characterization (HPPC) tests carried out at different temperatures and current rates to obtain a model valid for a wide range of operating conditions. The SOC estimation strategies are developed starting from the experimental results and it is validated through different driving cycling simulations. The results show that the Sigma Points Kalman filter produces a better estimate of SOC with respect to the Extended Kalman Filter, due to its better capability to deal with system non-linearities, with comparable computational complexity

    Moraxella catarrhalis evades neutrophil oxidative stress responses providing a safer niche for nontypeable Haemophilus influenzae

    Get PDF
    Moraxella catarrhalis and nontypeable Haemophilus influenzae (NTHi) are pathogenic bacteria frequently associated with exacerbation of chronic obstructive pulmonary disease (COPD), whose hallmark is inflammatory oxidative stress. Neutrophils produce reactive oxygen species (ROS) which can boost antimicrobial response by promoting neutrophil extracellular traps (NET) and autophagy. Here, we showed that M. catarrhalis induces less ROS and NET production in differentiated HL-60 cells compared to NTHi. It is also able to actively interfere with these responses in chemically activated cells in a phagocytosis and opsonin-independent and contact-dependent manner, possibly by engaging host immunosuppressive receptors. M. catarrhalis subverts the autophagic pathway of the phagocytic cells and survives intracellularly. It also promotes the survival of NTHi which is otherwise susceptible to the host antimicrobial arsenal. In-depth understanding of the immune evasion strategies exploited by these two human pathogens could suggest medical interventions to tackle COPD and potentially other diseases in which they co-exist

    Opportunities and challenges for data physicalization

    Get PDF
    Physical representations of data have existed for thousands of years. Yet it is now that advances in digital fabrication, actuated tangible interfaces, and shape-changing displays are spurring an emerging area of research that we call Data Physicalization. It aims to help people explore, understand, and communicate data using computer-supported physical data representations. We call these representations physicalizations, analogously to visualizations -- their purely visual counterpart. In this article, we go beyond the focused research questions addressed so far by delineating the research area, synthesizing its open challenges and laying out a research agenda

    Vocal imitations and the identification of sound events

    Get PDF
    International audienceIt is commonly observed that a speaker vocally imitates a sound that she or he intends to communicate to an interlocutor. We report on an experiment that examined the assumption that vocal imitations can e ffectively communicate a referent sound, and that they do so by conveying the features necessary for the identifi cation of the referent sound event. Subjects were required to sort a set of vocal imitations of everyday sounds. The resulting clusters corresponded in most of the cases to the categories of the referent sound events, indicating that the imitations enabled the listeners to recover what was imitated. Furthermore, a binary decision tree analysis showed that a few characteristic acoustic features predicted the clusters. These features also predicted the classi fication of the referent sounds, but did not generalize to the categorization of other sounds. This showed that, for the speaker, vocally imitating a sound consists of conveying the acoustic features important for recognition, within the constraints of human vocal production. As such vocal imitations prove to be a phenomenon potentially useful to study sound identifi cation

    Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats

    Get PDF
    Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is not yet understood. Here, we demonstrate that multisensory information modulates competition among SC neurons to elicit faster responses. We conducted multiunit recordings from the SC of rats performing a two-alternative spatial discrimination task using auditory and/or visual stimuli. We found that a large population of SC neurons showed direction-selective activity before the onset of movement in response to the stimuli irrespective of stimulation modality. Trial-by-trial correlation analysis showed that the premovement activity of many SC neurons increased with faster reaction speed for the contraversive movement, whereas the premovement activity of another population of neurons decreased with faster reaction speed for the ipsiversive movement. When visual and auditory stimuli were presented simultaneously, the premovement activity of a population of neurons for the contraversive movement was enhanced, whereas the premovement activity of another population of neurons for the ipsiversive movement was depressed. Unilateral inactivation of SC using muscimol prolonged reaction times of contraversive movements, but it shortened those of ipsiversive movements. These findings suggest that the difference in activity between the SC hemispheres regulates the reaction speed of motor responses, and multisensory information enlarges the activity difference resulting in faster responses

    Aging affects attunement in perceiving length by dynamic touch

    Get PDF
    Earlier studies have revealed age-dependent differences in perception by dynamic touch. In the present study, we examined whether the capacity to learn deteriorates with aging. Adopting an ecological approach to learning, the authors examined the process of attunement—that is, the changes in what informational variable is exploited. Young and elderly adults were trained to perceive the lengths of unseen, handheld rods. It was found that the capacity to attune declines with aging: Contrary to the young adults, the elderly proved unsuccessful in learning to detect the specifying informational variables. The fact that aging affects the capacity to attune sets a new line of research in the study of perception and perceptual-motor skills of elderly. The authors discuss the implications of their findings for the ongoing discussions on the ecological approach to learning
    • …
    corecore