5,679 research outputs found
Thermochemical stability: A comparison between experimental and predicted data
The first step to be performed during the development of a new industrial process should be the assessment of all hazards associated to the involved compounds. Particularly, the knowledge of all substances thermochemical parameters is a primary feature for such a hazard evaluation. CHETAH (CHEmical Thermodynamic And Hazard evaluation) is a prediction software suitable for calculating potential hazards of chemicals, mixtures or a single reaction that, using only the structure of the involved molecules and Benson's group contribution method, is able to calculate heats of formation, entropies, Gibbs free energies and reaction enthalpies. Because of its ability to predict the potential hazards of a material or mixture, CHETAH is part of the so-called \u201cdesktop methods\u201d for early stage chemical safety analysis.
In this work, CHETAH software has been used to compile a complete risk database reporting heats of decomposition and Energy Release Potential (ERP) for 342 common use chemicals. These compounds have been gathered into classes depending on their functional groups and similarities in their thermal behavior. Calculated decomposition enthalpies for each of the compounds have also been compared with experimental data obtained with either thermoanalytic or calorimetric techniques (Differential Scanning Calorimeter \u2013 DSC \u2013 and Accelerating Rate Calorimeter \u2013 ARC)
The Supernova Remnant W44: confirmations and challenges for cosmic-ray acceleration
The middle-aged supernova remnant (SNR) W44 has recently attracted attention
because of its relevance regarding the origin of Galactic cosmic-rays. The
gamma-ray missions AGILE and Fermi have established, for the first time for a
SNR, the spectral continuum below 200 MeV which can be attributed to neutral
pion emission. Confirming the hadronic origin of the gamma-ray emission near
100 MeV is then of the greatest importance. Our paper is focused on a global
re-assessment of all available data and models of particle acceleration in W44,
with the goal of determining on a firm ground the hadronic and leptonic
contributions to the overall spectrum. We also present new gamma-ray and CO
NANTEN2 data on W44, and compare them with recently published AGILE and Fermi
data. Our analysis strengthens previous studies and observations of the W44
complex environment and provides new information for a more detailed modeling.
In particular, we determine that the average gas density of the regions
emitting 100 MeV - 10 GeV gamma-rays is relatively high (n= 250 - 300 cm^-3).
The hadronic interpretation of the gamma-ray spectrum of W44 is viable, and
supported by strong evidence. It implies a relatively large value for the
average magnetic field (B > 10^2 microG) in the SNR surroundings, sign of field
amplification by shock-driven turbulence. Our new analysis establishes that the
spectral index of the proton energy distribution function is p1 = 2.2 +/- 0.1
at low energies and p2 = 3.2 +/- 0.1 at high energies. We critically discuss
hadronic versus leptonic-only models of emission taking into account
simultaneously radio and gamma-ray data. We find that the leptonic models are
disfavored by the combination of radio and gamma-ray data. Having determined
the hadronic nature of the gamma-ray emission on firm ground, a number of
theoretical challenges remains to be addressed.Comment: 13 pages, 11 figures, accepted by A&
Discovery of the supernova remnant G351.0-5.4
Context. While searching the NRAO VLA Sky Survey (NVSS) for diffuse radio
emission, we have serendipitously discovered extended radio emission close to
the Galactic plane. The radio morphology suggests the presence of a previously
unknown Galactic supernova remnant. An unclassified {\gamma}-ray source
detected by EGRET (3EG J1744-3934) is present in the same location and may stem
from the interaction between high-speed particles escaping the remnant and the
surrounding interstellar medium.
Aims. Our aim is to confirm the presence of a previously unknown supernova
remnant and to determine a possible association with the {\gamma}-ray emission
3EG J1744-3934.
Methods. We have conducted optical and radio follow-ups of the target using
the Dark Energy Camera (DECam) on the Blanco telescope at Cerro Tololo
Inter-American Observatory (CTIO) and the Giant Meterwave Radio Telescope
(GMRT). We then combined these data with archival radio and {\gamma}-ray
observations.
Results. While we detected the extended emission in four different radio
bands (325, 1400, 2417, and 4850 MHz), no optical counterpart has been
identified. Given its morphology and brightness, it is likely that the radio
emission is caused by an old supernova remnant no longer visible in the optical
band. Although an unclassified EGRET source is co-located with the supernova
remnant, Fermi-LAT data do not show a significant {\gamma}-ray excess that is
correlated with the radio emission. However, in the radial distribution of the
{\gamma}-ray events, a spatially extended feature is related with SNR at a
confidence level {\sigma}.
Conclusions. We classify the newly discovered extended emission in the radio
band as the old remnant of a previously unknown Galactic supernova: SNR
G351.0-5.4.Comment: 6 pages, 6 figures, accepted A&
Investigating the high-frequency spectral features of SNRs Tycho, W44 and IC443 with the Sardinia Radio Telescope
The main characteristics in the radio continuum spectra of Supernova Remnants
(SNRs) result from simple synchrotron emission. In addition, electron
acceleration mechanisms can shape the spectra in specific ways, especially at
high radio frequencies. These features are connected to the age and the
peculiar conditions of the local interstellar medium interacting with the SNR.
Whereas the bulk radio emission is expected at up to GHz, sensitive
high-resolution images of SNRs above 10 GHz are lacking and are not easily
achievable, especially in the confused regions of the Galactic Plane. In the
framework of the early science observations with the Sardinia Radio Telescope
in February-March 2016, we obtained high-resolution images of SNRs Tycho, W44
and IC443 that provided accurate integrated flux density measurements at 21.4
GHz: 8.8 0.9 Jy for Tycho, 25 3 Jy for W44 and 66 7 Jy for
IC443. We coupled the SRT measurements with radio data available in the
literature in order to characterise the integrated and spatially-resolved
spectra of these SNRs, and to find significant frequency- and region-dependent
spectral slope variations. For the first time, we provide direct evidence of a
spectral break in the radio spectral energy distribution of W44 at an
exponential cutoff frequency of 15 2 GHz. This result constrains the
maximum energy of the accelerated electrons in the range GeV, in
agreement with predictions indirectly derived from AGILE and \textit{Fermi}-LAT
gamma-ray observations. With regard to IC443, our results confirm the
noticeable presence of a bump in the integrated spectrum around GHz
that could result from a spinning dust emission mechanism.Comment: 12 pages, 9 figure
Epidemics in partially overlapped multiplex networks
Many real networks exhibit a layered structure in which links in each layer
reflect the function of nodes on different environments. These multiple types
of links are usually represented by a multiplex network in which each layer has
a different topology. In real-world networks, however, not all nodes are
present on every layer. To generate a more realistic scenario, we use a
generalized multiplex network and assume that only a fraction of the nodes
are shared by the layers. We develop a theoretical framework for a branching
process to describe the spread of an epidemic on these partially overlapped
multiplex networks. This allows us to obtain the fraction of infected
individuals as a function of the effective probability that the disease will be
transmitted . We also theoretically determine the dependence of the epidemic
threshold on the fraction of shared nodes in a system composed of two
layers. We find that in the limit of the threshold is dominated by
the layer with the smaller isolated threshold. Although a system of two
completely isolated networks is nearly indistinguishable from a system of two
networks that share just a few nodes, we find that the presence of these few
shared nodes causes the epidemic threshold of the isolated network with the
lower propagating capacity to change discontinuously and to acquire the
threshold of the other network.Comment: 13 pages, 4 figure
Imaging of SNR IC443 and W44 with the Sardinia Radio Telescope at 1.5 GHz and 7 GHz
Observations of supernova remnants (SNRs) are a powerful tool for
investigating the later stages of stellar evolution, the properties of the
ambient interstellar medium, and the physics of particle acceleration and
shocks. For a fraction of SNRs, multi-wavelength coverage from radio to ultra
high-energies has been provided, constraining their contributions to the
production of Galactic cosmic rays. Although radio emission is the most common
identifier of SNRs and a prime probe for refining models, high-resolution
images at frequencies above 5 GHz are surprisingly lacking, even for bright and
well-known SNRs such as IC443 and W44. In the frameworks of the Astronomical
Validation and Early Science Program with the 64-m single-dish Sardinia Radio
Telescope, we provided, for the first time, single-dish deep imaging at 7 GHz
of the IC443 and W44 complexes coupled with spatially-resolved spectra in the
1.5-7 GHz frequency range. Our images were obtained through on-the-fly mapping
techniques, providing antenna beam oversampling and resulting in accurate
continuum flux density measurements. The integrated flux densities associated
with IC443 are S_1.5GHz = 134 +/- 4 Jy and S_7GHz = 67 +/- 3 Jy. For W44, we
measured total flux densities of S_1.5GHz = 214 +/- 6 Jy and S_7GHz = 94 +/- 4
Jy. Spectral index maps provide evidence of a wide physical parameter scatter
among different SNR regions: a flat spectrum is observed from the brightest SNR
regions at the shock, while steeper spectral indices (up to 0.7) are observed
in fainter cooling regions, disentangling in this way different populations and
spectra of radio/gamma-ray-emitting electrons in these SNRs.Comment: 13 pages, 9 figures, accepted for publication to MNRAS on 18 May 201
Primer informe de Aelurostrongylus abstrusus en el caracol de tierra Rumina decollata, en la Ciudad Autónoma de Buenos Aires
Aelurostrongylus abstrusus (Railliet, 1898) is a worldwide distributed lungworm that affects wild and domestic cats, causing bronchopneumonia of varying intensity. Cats became infected by eating slugs and snails with third infective stage larvae (L3). The aim of the study was to describe the presence of A. abstrusus in R. decollate snails. R. decollata specimens and samples of cats’ faeces were collected from the open spaces of a public institution of Buenos Aires city, inhabited by a stray cat population. Cats’ faeces were processed by Baermman´s technique and snails were digested in pool, by artificial digestion method. First stage larvae of A. abstrusus were recovered from 35.30 % (6/17) of the sampled faeces. An 80 % (20/25) snails pools were positive for the second and third larval stages. Mean value of total larvae recovered per pool was 150.64 and mean value of L3/pool was 93.89. This is the first report of the development of A. abstrusus infective larvae in R. decollate snail as intermediate host, since the relationship between high levels of infection in snails and in cats’ faeces could be demonstrated in cats’ habitat.Aelurostrongylus abstrusus (Railliet, 1898) es un helminto pulmonar mundialmente distribuido que afecta a los gatos, causando bronconeumonias de variada intensidad. La infección se produce por ingestión de babosas y caracoles terrestres con larvas infectantes (L3). El objetivo del estudio fue describir la presencia de A. abstrusus en el caracol R. decollata. Se recolectaron muestras de heces felinas y caracoles presentes en una institución pública de la Ciudad Autónoma de Buenos Aires, habitada por una población de gatos sin propietario. Las heces fueron procesadas mediante la técnica de Baermman y los caracoles fueron digeridos en pool por digestión artificial enzimática. Larvas de primer estadio (L1) de A. abstrusus fueron recuperadas en el 35,30% (6/17) de las heces. El 80% (20/25) de los pooles de caracoles presentó larvas de segundo y tercer estadio. El promedio de larvas totales recuperado por pool fue de 150,64 y el valor medio de L3/pool fue de 93.89. Este es el primer hallazgo del desarrollo de larvas infectivas de A. abstrusus en el caracol doméstico R. decollata. Los altos niveles de infección encontrados en los caracoles y en las heces de los gatos demuestran el potencial de R. decollata como hospedador intermediario de A. abstrusus.Fil: Cardillo, Natalia Marina. Universidad de Buenos Aires. Facultad de Cs.veterinarias. Area de Parasitología y Enfermedades Parasitarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Clemente, A.. Universidad de Buenos Aires. Facultad de Cs.veterinarias. Area de Parasitología y Enfermedades Parasitarias; ArgentinaFil: Pasqualetti, M.. Universidad de Buenos Aires. Facultad de Cs.veterinarias. Area de Parasitología y Enfermedades Parasitarias; ArgentinaFil: Borrás, P.. Universidad de Buenos Aires. Facultad de Cs.veterinarias. Area de Parasitología y Enfermedades Parasitarias; ArgentinaFil: Rosa, A.. Universidad de Buenos Aires. Facultad de Cs.veterinarias. Area de Parasitología y Enfermedades Parasitarias; ArgentinaFil: Ribicich, M.. Universidad de Buenos Aires. Facultad de Cs.veterinarias. Area de Parasitología y Enfermedades Parasitarias; Argentin
- …
