76 research outputs found

    The influence of long-term inputs of catch crops and cereal straw on yield, protein composition and technological quality of a spring and a winter wheat

    Get PDF
    Under conditions of restricted nitrogen (N) input such as in organic farming systems, crop N uptake must rely on N mineralised from applied animal manure, crop residues and native soil organic matter. Scarcity of N may impede the production of quality grain for bread production, and input and retention of N in soil are therefore important parameters for soil fertility. Toretain N in the crop-soilsystem, catch crops may be grown in breaks between main crops where they provide a signiïŹcant sink for N mineralised in late summer and autumn (Thomsen, 2005). In corporation of straw may likewise retain mineralised N by microbial immobilisation (Christensen, 1986) and will also directly add to the N mineralisation potential when the N supplied in the straw accumulates (Thomsen & Christensen, 2004). Under northern European conditions, winter wheat may generally be of lower quality than spring wheat, but winter wheat has a higher yield potential. When the N uptake is mainly based on N mineralised from either applied or indigenous soil organic matter, however, this may even out the quality diïŹ€erence between winter and spring wheat as the longer growing season of winter wheat may boost its N utilisation. Growing conditions are highly important for protein quantity whereas main lygenetic factors inïŹ‚uence protein composition (Amesetal., 1999; Luoetal., 2000). Wheat grain proteins have been classiïŹed as albumins, globulins, gliadins and glutenins on the basis of their solubility (Osborne, 1907). Reverse-phase (RP) high performance liquid chromatography (HPLC) allows the quantitative determination of these diïŹ€erent ïŹ‚our protein groups together with single proteins (α5-, α1,2-, α-, Îłc-type gliadins, x- and Îł-type high (HMW) and low (LMW) molecular weights subunits of glutenin) (Wieser & Seilmeier, 1998). The proteins can also be divided into polymers (glutenins) or monomers (gliadins, albumins, globulins) based on their aggregating properties. The polymeric proteins are critical for governing wheat ïŹ‚our processing properties, and their quantity and size distribution reliably measured by size-exclusion (SE) HPLC techniques have been shown to be important indicators of baking quality (Dachkevitch & Autran, 1989; Bateyetal., 1991). The aim of this study was to examine whether wheat yield and baking quality determined by chromatographic techniques together with rheological and chemical quality measurements could be improved by combining agronomic strategies consisting of wheat cultivars and long-term organic matter inputs. The variables tested were (A) a winter wheat and a spring wheat cultivar, (B) three catch crop strategies and (C) four straw incorporation rates

    Vinterhvede og vÄrhvede - efterafgrÞder pÄvirkede udbyttet men ikke kvaliteten

    Get PDF
    KvÊlstofoptaget i afgrÞder stammer dels fra minerali-sering fra jordens organiske materiale dels fra evt. tilfÞrt gÞdning. Jordens evne til at frigive kvÊlstof ved mineralisering, og dermed dens evne til at forsyne en afgrÞde med kvÊlstof, pÄvirkes bl.a. af dyrknings-systemet, herunder hvor meget organisk materiale der tilfÞres jorden f.eks. i form af afgrÞderester. Planters evne til at udnytte mineraliseret kvÊlstof afhÊnger bl.a. af vÊkstsÊsonens lÊngde. Det forven-tedes derfor, at afgrÞder med lang vÊkstsÊson bedre er i stand til at udnytte en hÞj mineralisering end afgrÞder med kort vÊkstsÊson

    Agronomical techniques to improve technological and sanitary quality

    Get PDF
    In spite of variable grain protein contents, baking quality of organic wheat was found to be acceptable to good. Mycotoxin (DON) infestation was generally low on tested grain samples. Choice of wheat cultivar was the most efficient way to obtain higher grain quality. Fertilization with readily available nitrogen and, to a lower extent, association with legumes and green manures with mixtures containing fodder legumes also improved grain quality. Reduced tillage affected soil quality and wheat yield but had little effects on grain quality

    Techniques to improve technological and sanitary quality

    Get PDF
    Agronomical ways for better quality and safety Choice of cultivar is an efficient way to obtain higher grain quality. Intercropping legumes (grain or forage) improves weed competition and N availability for wheat crop or succeeding crop. Green manure can be an effective alternative to farmyard manure. Fertilization with readily available nitrogen improves yield and quality when water is available. Reduced tillage affects soil fertility and wheat yield but has little effects on grain quality. Technological ways for better quality and safety Milling process strongly influences flour characteristics. Stone milling improves nutritive value; characteristics remain very stable independent of the milling yield. Flour characteristics from roller milling appear very susceptible to the milling yield. Increasing the milling yield in the aim of enriching nutritional quality has a detrimental effect either on safety (DON) or on bread-making quality (bread volume)

    Technological quality of organic wheat in Europe

    Get PDF
    The demand for high quality organic bread wheat is increasing. The quality level of organic wheat harvested in EU is mainly dependant on variety, environmental conditions and agronomic practices. In some countries, protein content and composition, influencing technological value, are equivalent to those produced under conventional practices. Beside agronomical techniques, technological processes can help to maintain a good quality. Pre-treatments before milling such as debranning were found to be efficient in reducing DON contamination. The project highlighted the necessity to redefine the methods to assess the quality of organic wheat

    Wheat yield and quality as influenced by reduced tillage in organic farming

    Get PDF
    Organic farmers are interested in soil conservation by reduced tillage, techniques well known in conventional agriculture to protect soil quality and limit labor time and energy costs. However, organic farming and reduced tillage can modify weeds, soil structure, and thus soil nitrogen (N) mineralization which strongly influences wheat yield and quality. The main objectives of this study were to analyze how reduced tillage applied to organic wheat influenced (1) grain yield, protein concentration, and weed infestation; (2) deoxynivalenol (DON) contamination on grain; (3) technological quality parameters such as dry gluten, zeleny index, falling number, and gluten index; (4) protein composition (F1, F2, F3, F4, and F5 fractions, and UPP, gliadin/glutenin ratio); and (5) baking test. For this purpose, we analyzed five site-years of data from winter wheat crops where mouldboard ploughing and reduced tillage were compared in three experimental trials (two in France and one in Switzerland). Main results concern wheat yields: the effect of reduced tillage on wheat yield was influenced by several factors such as weed competition. No significant increase in mycotoxin content (DON) due to reduced tillage was detected. Contamination with DON was always below the European threshold for human consumption. The technological quality parameters were less affected by the tillage treatments than grain yield: protein content, gluten index, zeleny index, and falling number showed on average no significant difference between treatments although the protein composition was slightly different. The main results of this study are that the effect of reduced tillage on grain yield depends very much on soil type, weather conditions, and time after conversion, whereas there is only minor impact on wheat quality. This is in contrast to the hypothesis that reduced tillage under organic farming will cause problems in baking quality

    Améliorer la qualité technologique, nutritionnelle et sanitaire du bléiologique. Principaux leviers agronomiques et technologiques

    Get PDF
    Communication lors du colloque "DinABio 2013", 13 et 14 novembre 2013 Ă  Tours (Fance)The organic bread wheat market has been diversified over time through the emergence of different sale channels. Processors require organic bread wheat of higher quality and safety in order to meet the consumers’ demand. The overall objective of the AGTEC-Org project was to identify agronomical and technological ways to improve the performance of organic wheat and flour. The findings would contribute to enhanced baking quality and nutritional value of organic flour, as well as prevention of mycotoxin contamination. The project involved 9 research centers or universities from 5 European countries for a total budget of about 1.5 million €. More than 400 experimental treatments were analyzed from 23 agronomic trials and 4 lab-experiments on food technology. Choice of cultivar is an efficient way to obtain higher grain quality. Intercropping legumes (grain or forage) improves weed control and N availability for wheat crop or succeeding crop. Green manure can be an effective alternative to farmyard manure. Fertilization with organic fertilizers improves yield and quality when water is available. Reduced tillage affects soil fertility and wheat yield but has little effects on grain quality. Milling process strongly influences flour characteristics. Stone milling improves the nutritive value and flour characteristics remain very stable independently of the milling yield. However, stone milling slightly raises DON levels. Characteristics of flour produced by means of roller milling appear very dependent on milling yield, instead. Increasing milling yield with the aim of enriching nutritional quality has a detrimental effect on either safety (DON) or bread-making quality (bread volume). Debranning before milling has a very positive impact on flour safety by reducing its DON content by 50 %.Les acteurs de la filiĂšre blĂ© biologique panifiable font face Ă  divers enjeux complĂ©mentaires voire parfois contradictoires. Les agriculteurs et transformateurs souhaitent augmenter les niveaux de production tout en satisfaisant prioritairement les attentes des consommateurs pour une alimentation de meilleure qualitĂ© nutritionnelle et sanitaire, plus durable et plus respectueuse de l’environnement. Le projet europĂ©en AGTEC-Org a eu pour objectif d’identifier les leviers agronomiques et technologiques permettant d’amĂ©liorer conjointement la productivitĂ© et la qualitĂ© des blĂ©s et des farines biologiques. Il a rĂ©uni agronomes, technologues et Ă©conomistes issus de 9 centres de recherche et universitĂ©s europĂ©ennes pour un budget total de 1,5 M€. Plus de 400 traitements expĂ©rimentaux ont Ă©tĂ© analysĂ©s Ă  partir de 23 expĂ©rimentations agronomiques et 4 expĂ©rimentations technologiques. Le choix de la variĂ©tĂ© est un moyen efficace pour obtenir une qualitĂ© de grain supĂ©rieure. L’insertion de lĂ©gumineuses (grain ou fourrage) dans le blĂ© amĂ©liore la compĂ©tition avec les adventices et la nutrition azotĂ©e du blĂ© et/ou de la culture de printemps suivante. L’utilisation rĂ©guliĂšre d’engrais vert peut ĂȘtre une alternative pour compenser l’absence de fumiers sur l’exploitation. La fertilisation organique amĂ©liore le rendement et la qualitĂ© des blĂ©s lorsque la nutrition hydrique est assurĂ©e. La suppression du labour peut affecter la fertilitĂ© du sol et le rendement du blĂ© alors qu’elle n’intervient pas sur la qualitĂ© du grain. Le mode de broyage (meule de pierre vs cylindres) influence fortement les caractĂ©ristiques technologiques, la sĂ©curitĂ© sanitaire et la valeur nutritionnelle de la farine. Le broyage sur meule amĂ©liore la composition nutritionnelle mais augmente aussi la prĂ©sence de certains contaminants. Les caractĂ©ristiques de la farine broyĂ©e sur meule de pierre sont moins influencĂ©es par le rendement en mouture. Au contraire, les caractĂ©ristiques de la farine obtenue par cylindre apparaissent trĂšs dĂ©pendantes du rendement en mouture. Augmenter le rendement en farine dans l’objectif d’enrichir la qualitĂ© nutritionnelle rĂ©duit aussi bien la sĂ©curitĂ© sanitaire (DON) que la qualitĂ© boulangĂšre (volume du pain). Le dĂ©corticage des grains avant broyage diminue les risques sanitaires en rĂ©duisant le taux de mycotoxines (DON) de 50%

    Improving baking quality, nutritional value and safety of organic winter wheat / Améliorer la qualité technologique, nutritionnelle et sanitaire du blé biologique, Principaux leviers agronomiques et technologiques

    Get PDF
    The organic bread wheat market has been diversified over time through the emergence of different sale channels. Processors require organic bread wheat of higher quality and safety in order to meet the consumers’ demand. The overall objective of the AGTEC-Org project was to identify agronomical and technological ways to improve the performance of organic wheat and flour. The findings would contribute to enhanced baking quality and nutritional value of organic flour, as well as prevention of mycotoxin contamination. The project involved 9 research centers or universities from 5 European countries for a total budget of about 1.5 million €. More than 400 experimental treatments were analyzed from 23 agronomic trials and 4 lab-experiments on food technology. Choice of cultivar is an efficient way to obtain higher grain quality. Intercropping legumes (grain or forage) improves weed control and N availability for wheat crop or succeeding crop. Green manure can be an effective alternative to farmyard manure. Fertilization with organic fertilizers improves yield and quality when water is available. Reduced tillage affects soil fertility and wheat yield but has little effects on grain quality. Milling process strongly influences flour characteristics. Stone milling improves the nutritive value and flour characteristics remain very stable independently of the milling yield. However, stone milling slightly raises DON levels. Characteristics of flour produced by means of roller milling appear very dependent on milling yield, instead. Increasing milling yield with the aim of enriching nutritional quality has a detrimental effect on either safety (DON) or bread-making quality (bread volume). Debranning before milling has a very positive impact on flour safety by reducing its DON content by 50 %

    Long-term modification of cortical synapses improves sensory perception

    Get PDF
    Synapses and receptive fields of the cerebral cortex are plastic. However, changes to specific inputs must be coordinated within neural networks to ensure that excitability and feature selectivity are appropriately configured for perception of the sensory environment. Long-lasting enhancements and decrements to rat primary auditory cortical excitatory synaptic strength were induced by pairing acoustic stimuli with activation of the nucleus basalis neuromodulatory system. Here we report that these synaptic modifications were approximately balanced across individual receptive fields, conserving mean excitation while reducing overall response variability. Decreased response variability should increase detection and recognition of near-threshold or previously imperceptible stimuli, as we found in behaving animals. Thus, modification of cortical inputs leads to wide-scale synaptic changes, which are related to improved sensory perception and enhanced behavioral performance

    Pαx6 Expression in Postmitotic Neurons Mediates the Growth of Axons in Response to SFRP1

    Get PDF
    During development, the mechanisms that specify neuronal subclasses are coupled to those that determine their axonal response to guidance cues. Pax6 is a homedomain transcription factor required for the specification of a variety of neural precursors. After cell cycle exit, Pax6 expression is often shut down in the precursor progeny and most postmitotic neurons no longer express detectable levels of the protein. There are however exceptions and high Pax6 protein levels are found, for example, in postmitotic retinal ganglion cells (RGCs), dopaminergic neurons of the olfactory bulb and the limbic system in the telencephalon. The function of Pax6 in these differentiating neurons remains mostly elusive. Here, we demonstrate that Pax6 mediates the response of growing axons to SFRP1, a secreted molecule expressed in several Pax6-positive forebrain territories. Forced expression of Pax6 in cultured postmitotic cortical neurons, which do not normally express Pax6, was sufficient to increment axonal length. Growth was blocked by the addition of anti-SFRP1 antibodies, whereas exogenously added SFRP1 increased axonal growth of Pax6-transfected neurons but not that of control or untransfected cortical neurons. In the reverse scenario, shRNA-mediated knock-down of Pax6 in mouse retinal explants specifically abolished RGCs axonal growth induced by SFRP1, but had no effect on RGCs differentiation and it did not modify the effect of Shh or Netrin on axon growth. Taken together these results demonstrate that expression of Pax6 is necessary and sufficient to render postmitotic neurons competent to respond to SFRP1. These results reveal a novel and unexpected function of Pax6 in postmitotic neurons and situate Pax6 and SFRP1 as pair regulators of axonal connectivity
    • 

    corecore