3,038 research outputs found

    Bound state techniques to solve the multiparticle scattering problem

    Full text link
    Solution of the scattering problem turns to be very difficult task both from the formal as well as from the computational point of view. If the last two decades have witnessed decisive progress in ab initio bound state calculations, rigorous solution of the scattering problem remains limited to A\leq4 case. Therefore there is a rising interest to apply bound-state-like methods to handle non-relativistic scattering problems. In this article the latest theoretical developments in this field are reviewed. Five fully rigorous methods will be discussed, which address the problem of nuclear collisions in full extent (including the break-up problem) at the same time avoiding treatment of the complicate boundary conditions or integral kernel singularities. These new developments allows to use modern bound-state techniques to advance significantly rigorous solution of the scattering problem.Comment: To appear in Progress in Particle and Nuclear Physic

    Considerations on apartment design.

    Get PDF
    Massachusetts Institute of Technology. Dept. of Architecture. Thesis. February 1945. B.Arch.Accompanying drawings held by MIT Museum.Bibliography: leaf [36].Massachusetts Institute of Technology. Dept. of Architecture. Thesis. February 1945. B.Arch

    El momento de sumar [editorial]

    Get PDF
    Entre el 15 y el 17 de noviembre Barcelona acogerá el V Congreso Nacional de Farmacéuticos Comunitarios, organizado por SEFAC y que ha sido reconocido de interés sanitario por el Ministerio de Sanidad, Servicios Sociales e Igualdad. La edición de este año tiene como lema Soluciones para una farmacia necesaria, efectiva y segura y no puede ser más oportuna esta idea en el contexto actual en el que se desenvuelve la profesión. Desde hace años vivimos tiempos de incertidumbre y dificultades, jalonados por continuas rebajas en los precios de los medicamentos y agravados por la actual coyuntura económica, lo que se ha traducido en la puesta en marcha de medidas improvisadas, que están generando mucha incertidumbre en un sector que necesita estabilidad. Últimamente estamos sufriendo el establecimiento de nuevos copagos, la desfinanciación de medicamentos, los cambios periódicos en los precios menores y numerosos impagos que arriesgan la viabilidad de muchas farmacias.El Congreso de noviembre quiere ser el punto de encuentro ideal y un punto de inflexión para que los farmacéuticos comunitarios de toda España compartamos nuestras inquietudes y experiencias en la búsqueda de propuestas que nos permitan encarar el futuro con optimismo. Somos conscientes de que en estos momentos el desánimo abunda entre muchos compañeros farmacéuticos, pero no debemos dejar que ese sentimiento nos arrastre, pues son muchas las actividades que el farmacéutico lleva a cabo en la farmacia comunitaria por la sociedad, los pacientes, la sostenibilidad del sistema sanitario y, en definitiva, por sí misma. Debemos ser capaces de transmitir esto y darle visibilidad y, para ello, es imprescindible que no bajemos los brazos y trabajemos desde la unión y el compromiso en defensa de los valores que aporta la farmacia asistencial y el farmacéutico como verdadero experto en medicamentos

    Nuclear models on a lattice

    Get PDF
    We present the first results of a quantum field approach to nuclear models obtained by lattice techniques. Renormalization effects for fermion mass and coupling constant in case of scalar and pseudoscalar interaction lagrangian densities are discussed.Comment: 4 pages - 7 figures ; Invited talk to QCD 05: 12th International QCD Conference, 4-9 Jul 2005, Montpellier, France ; To appear in Nucl. Phys. B (Proc. Suppl.

    Antiviral roles of plant ARGONAUTES

    Get PDF
    [EN] ARGONAUTES (AGOs) are the effector proteins functioning in eukaryotic RNA silencing pathways. AGOs associate with small RNAs and are programmed to target complementary RNA or DNA. Plant viruses induce a potent and specific antiviral RNA silencing host response in which AGOs play a central role. Antiviral AGOs associate with virus-derived small RNAs to repress complementary viral RNAs or DNAs, or with endogenous small RNAs to regulate host gene expression and promote antiviral defense. Here, we review recent progress towards understanding the roles of plant AGOs in antiviral defense. We also discuss the strategies that viruses have evolved to modulate, attenuate or suppress AGO antiviral functions.We thank members of the Carrington lab for useful and crucial discussions, and apologize to those colleagues whose work could not be cited because of space and reference limitations. This work was supported by grants from the National Science Foundation (MCB-1231726 and MCB-1330562) and National Institutes of Health (AI043288) to James C Carrington, and from the European Commission (H2020-MSCA-IF-2014-655841) to Alberto Carbonell.Carbonell, A.; Carrington, JC. (2015). Antiviral roles of plant ARGONAUTES. Current Opinion in Plant Biology. 27:111-117. https://doi.org/10.1016/j.pbi.2015.06.013S11111727Meister, G. (2013). Argonaute proteins: functional insights and emerging roles. Nature Reviews Genetics, 14(7), 447-459. doi:10.1038/nrg3462Poulsen, C., Vaucheret, H., & Brodersen, P. (2013). Lessons on RNA Silencing Mechanisms in Plants from Eukaryotic Argonaute Structures. The Plant Cell, 25(1), 22-37. doi:10.1105/tpc.112.105643Martínez de Alba, A. E., Elvira-Matelot, E., & Vaucheret, H. (2013). Gene silencing in plants: A diversity of pathways. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1829(12), 1300-1308. doi:10.1016/j.bbagrm.2013.10.005Csorba, T., Kontra, L., & Burgyán, J. (2015). viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology, 479-480, 85-103. doi:10.1016/j.virol.2015.02.028Vaucheret, H. (2008). Plant ARGONAUTES. Trends in Plant Science, 13(7), 350-358. doi:10.1016/j.tplants.2008.04.007Morel, J.-B., Godon, C., Mourrain, P., Béclin, C., Boutet, S., Feuerbach, F., … Vaucheret, H. (2002). Fertile Hypomorphic ARGONAUTE (ago1) Mutants Impaired in Post-Transcriptional Gene Silencing and Virus Resistance. The Plant Cell, 14(3), 629-639. doi:10.1105/tpc.010358Qu, F., Ye, X., & Morris, T. J. (2008). Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proceedings of the National Academy of Sciences, 105(38), 14732-14737. doi:10.1073/pnas.0805760105Wang, X.-B., Jovel, J., Udomporn, P., Wang, Y., Wu, Q., Li, W.-X., … Ding, S.-W. (2011). The 21-Nucleotide, but Not 22-Nucleotide, Viral Secondary Small Interfering RNAs Direct Potent Antiviral Defense by Two Cooperative Argonautes in Arabidopsis thaliana    . The Plant Cell, 23(4), 1625-1638. doi:10.1105/tpc.110.082305Dzianott, A., Sztuba-Solińska, J., & Bujarski, J. J. (2012). Mutations in the Antiviral RNAi Defense Pathway Modify Brome mosaic virus RNA Recombinant Profiles. Molecular Plant-Microbe Interactions®, 25(1), 97-106. doi:10.1094/mpmi-05-11-0137Garcia-Ruiz, H., Carbonell, A., Hoyer, J. S., Fahlgren, N., Gilbert, K. B., Takeda, A., … Carrington, J. C. (2015). Roles and Programming of Arabidopsis ARGONAUTE Proteins during Turnip Mosaic Virus Infection. PLOS Pathogens, 11(3), e1004755. doi:10.1371/journal.ppat.1004755Harvey, J. J. W., Lewsey, M. G., Patel, K., Westwood, J., Heimstädt, S., Carr, J. P., & Baulcombe, D. C. (2011). An Antiviral Defense Role of AGO2 in Plants. PLoS ONE, 6(1), e14639. doi:10.1371/journal.pone.0014639Jaubert, M., Bhattacharjee, S., Mello, A. F. S., Perry, K. L., & Moffett, P. (2011). ARGONAUTE2 Mediates RNA-Silencing Antiviral Defenses against Potato virus X in Arabidopsis    . Plant Physiology, 156(3), 1556-1564. doi:10.1104/pp.111.178012Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Gilbert, K. B., Montgomery, T. A., Nguyen, T., … Carrington, J. C. (2012). Functional Analysis of Three Arabidopsis ARGONAUTES Using Slicer-Defective Mutants  . The Plant Cell, 24(9), 3613-3629. doi:10.1105/tpc.112.099945Zhang, X., Zhang, X., Singh, J., Li, D., & Qu, F. (2012). Temperature-Dependent Survival of Turnip Crinkle Virus-Infected Arabidopsis Plants Relies on an RNA Silencing-Based Defense That Requires DCL2, AGO2, and HEN1. Journal of Virology, 86(12), 6847-6854. doi:10.1128/jvi.00497-12Ma, X., Nicole, M.-C., Meteignier, L.-V., Hong, N., Wang, G., & Moffett, P. (2014). Different roles for RNA silencing and RNA processing components in virus recovery and virus-induced gene silencing in plants. Journal of Experimental Botany, 66(3), 919-932. doi:10.1093/jxb/eru447Takeda, A., Iwasaki, S., Watanabe, T., Utsumi, M., & Watanabe, Y. (2008). The Mechanism Selecting the Guide Strand from Small RNA Duplexes is Different Among Argonaute Proteins. Plant and Cell Physiology, 49(4), 493-500. doi:10.1093/pcp/pcn043Hamera, S., Song, X., Su, L., Chen, X., & Fang, R. (2011). Cucumber mosaic virus suppressor 2b binds to AGO4-related small RNAs and impairs AGO4 activities. The Plant Journal, 69(1), 104-115. doi:10.1111/j.1365-313x.2011.04774.xBhattacharjee, S., Zamora, A., Azhar, M. T., Sacco, M. A., Lambert, L. H., & Moffett, P. (2009). Virus resistance induced by NB-LRR proteins involves Argonaute4-dependent translational control. The Plant Journal, 58(6), 940-951. doi:10.1111/j.1365-313x.2009.03832.xRaja, P., Sanville, B. C., Buchmann, R. C., & Bisaro, D. M. (2008). Viral Genome Methylation as an Epigenetic Defense against Geminiviruses. Journal of Virology, 82(18), 8997-9007. doi:10.1128/jvi.00719-08Raja, P., Jackel, J. N., Li, S., Heard, I. M., & Bisaro, D. M. (2013). Arabidopsis Double-Stranded RNA Binding Protein DRB3 Participates in Methylation-Mediated Defense against Geminiviruses. Journal of Virology, 88(5), 2611-2622. doi:10.1128/jvi.02305-13Scholthof, H. B., Alvarado, V. Y., Vega-Arreguin, J. C., Ciomperlik, J., Odokonyero, D., Brosseau, C., … Moffett, P. (2011). Identification of an ARGONAUTE for Antiviral RNA Silencing in Nicotiana benthamiana        . Plant Physiology, 156(3), 1548-1555. doi:10.1104/pp.111.178764Ghoshal, B., & Sanfaçon, H. (2014). Temperature-dependent symptom recovery in Nicotiana benthamiana plants infected with tomato ringspot virus is associated with reduced translation of viral RNA2 and requires ARGONAUTE 1. Virology, 456-457, 188-197. doi:10.1016/j.virol.2014.03.026Iki, T., Yoshikawa, M., Nishikiori, M., Jaudal, M. C., Matsumoto-Yokoyama, E., Mitsuhara, I., … Ishikawa, M. (2010). In Vitro Assembly of Plant RNA-Induced Silencing Complexes Facilitated by Molecular Chaperone HSP90. Molecular Cell, 39(2), 282-291. doi:10.1016/j.molcel.2010.05.014Schuck, J., Gursinsky, T., Pantaleo, V., Burgyán, J., & Behrens, S.-E. (2013). AGO/RISC-mediated antiviral RNA silencing in a plant in vitro system. Nucleic Acids Research, 41(9), 5090-5103. doi:10.1093/nar/gkt193Zhu, H., Duan, C.-G., Hou, W.-N., Du, Q.-S., Lv, D.-Q., Fang, R.-X., & Guo, H.-S. (2011). Satellite RNA-Derived Small Interfering RNA satsiR-12 Targeting the 3’ Untranslated Region of Cucumber Mosaic Virus Triggers Viral RNAs for Degradation. Journal of Virology, 85(24), 13384-13397. doi:10.1128/jvi.05806-11Cao, M., Du, P., Wang, X., Yu, Y.-Q., Qiu, Y.-H., Li, W., … Ding, S.-W. (2014). Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs inArabidopsis. Proceedings of the National Academy of Sciences, 111(40), 14613-14618. doi:10.1073/pnas.1407131111Smith, N. A., Eamens, A. L., & Wang, M.-B. (2011). Viral Small Interfering RNAs Target Host Genes to Mediate Disease Symptoms in Plants. PLoS Pathogens, 7(5), e1002022. doi:10.1371/journal.ppat.1002022Shimura, H., Pantaleo, V., Ishihara, T., Myojo, N., Inaba, J., Sueda, K., … Masuta, C. (2011). A Viral Satellite RNA Induces Yellow Symptoms on Tobacco by Targeting a Gene Involved in Chlorophyll Biosynthesis using the RNA Silencing Machinery. PLoS Pathogens, 7(5), e1002021. doi:10.1371/journal.ppat.1002021Navarro, B., Gisel, A., Rodio, M. E., Delgado, S., Flores, R., & Di Serio, F. (2012). Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. The Plant Journal, 70(6), 991-1003. doi:10.1111/j.1365-313x.2012.04940.xMiozzi, L., Gambino, G., Burgyan, J., & Pantaleo, V. (2012). Genome-wide identification of viral and host transcripts targeted by viral siRNAs inVitis vinifera. Molecular Plant Pathology, 14(1), 30-43. doi:10.1111/j.1364-3703.2012.00828.xDe Ronde, D., Pasquier, A., Ying, S., Butterbach, P., Lohuis, D., & Kormelink, R. (2013). Analysis ofTomato spotted wilt virus NSs protein indicates the importance of the N-terminal domain for avirulence and RNA silencing suppression. Molecular Plant Pathology, 15(2), 185-195. doi:10.1111/mpp.12082Lacombe, S., Bangratz, M., Vignols, F., & Brugidou, C. (2010). The rice yellow mottle virus P1 protein exhibits dual functions to suppress and activate gene silencing. The Plant Journal, 61(3), 371-382. doi:10.1111/j.1365-313x.2009.04062.xGuo, H., Song, X., Xie, C., Huo, Y., Zhang, F., Chen, X., … Fang, R. (2013). Rice yellow stunt rhabdovirus Protein 6 Suppresses Systemic RNA Silencing by Blocking RDR6-Mediated Secondary siRNA Synthesis. Molecular Plant-Microbe Interactions®, 26(8), 927-936. doi:10.1094/mpmi-02-13-0040-rOkano, Y., Senshu, H., Hashimoto, M., Neriya, Y., Netsu, O., Minato, N., … Namba, S. (2014). In Planta Recognition of a Double-Stranded RNA Synthesis Protein Complex by a Potexviral RNA Silencing Suppressor    . The Plant Cell, 26(5), 2168-2183. doi:10.1105/tpc.113.120535Weinheimer, I., Jiu, Y., Rajamäki, M.-L., Matilainen, O., Kallijärvi, J., Cuellar, W. J., … Valkonen, J. P. T. (2015). Suppression of RNAi by dsRNA-Degrading RNaseIII Enzymes of Viruses in Animals and Plants. PLOS Pathogens, 11(3), e1004711. doi:10.1371/journal.ppat.1004711Baumberger, N., Tsai, C.-H., Lie, M., Havecker, E., & Baulcombe, D. C. (2007). The Polerovirus Silencing Suppressor P0 Targets ARGONAUTE Proteins for Degradation. Current Biology, 17(18), 1609-1614. doi:10.1016/j.cub.2007.08.039Bortolamiol, D., Pazhouhandeh, M., Marrocco, K., Genschik, P., & Ziegler-Graff, V. (2007). The Polerovirus F Box Protein P0 Targets ARGONAUTE1 to Suppress RNA Silencing. Current Biology, 17(18), 1615-1621. doi:10.1016/j.cub.2007.07.061Csorba, T., Lózsa, R., Hutvágner, G., & Burgyán, J. (2010). Polerovirus protein P0 prevents the assembly of small RNA-containing RISC complexes and leads to degradation of ARGONAUTE1. The Plant Journal, 62(3), 463-472. doi:10.1111/j.1365-313x.2010.04163.xFusaro, A. F., Correa, R. L., Nakasugi, K., Jackson, C., Kawchuk, L., Vaslin, M. F. S., & Waterhouse, P. M. (2012). The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation. Virology, 426(2), 178-187. doi:10.1016/j.virol.2012.01.026Derrien, B., Baumberger, N., Schepetilnikov, M., Viotti, C., De Cillia, J., Ziegler-Graff, V., … Genschik, P. (2012). Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. Proceedings of the National Academy of Sciences, 109(39), 15942-15946. doi:10.1073/pnas.1209487109Azevedo, J., Garcia, D., Pontier, D., Ohnesorge, S., Yu, A., Garcia, S., … Voinnet, O. (2010). Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes & Development, 24(9), 904-915. doi:10.1101/gad.1908710Zhang, X., Yuan, Y.-R., Pei, Y., Lin, S.-S., Tuschl, T., Patel, D. J., & Chua, N.-H. (2006). Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes & Development, 20(23), 3255-3268. doi:10.1101/gad.1495506Duan, C.-G., Fang, Y.-Y., Zhou, B.-J., Zhao, J.-H., Hou, W.-N., Zhu, H., … Guo, H.-S. (2012). Suppression of Arabidopsis ARGONAUTE1-Mediated Slicing, Transgene-Induced RNA Silencing, and DNA Methylation by Distinct Domains of the Cucumber mosaic virus 2b Protein. The Plant Cell, 24(1), 259-274. doi:10.1105/tpc.111.092718Giner, A., Lakatos, L., García-Chapa, M., López-Moya, J. J., & Burgyán, J. (2010). Viral Protein Inhibits RISC Activity by Argonaute Binding through Conserved WG/GW Motifs. PLoS Pathogens, 6(7), e1000996. doi:10.1371/journal.ppat.1000996Szabo, E. Z., Manczinger, M., Goblos, A., Kemeny, L., & Lakatos, L. (2012). Switching on RNA Silencing Suppressor Activity by Restoring Argonaute Binding to a Viral Protein. Journal of Virology, 86(15), 8324-8327. doi:10.1128/jvi.00627-12Pérez-Cañamás, M., & Hernández, C. (2015). Key Importance of Small RNA Binding for the Activity of a Glycine-Tryptophan (GW) Motif-containing Viral Suppressor of RNA Silencing. Journal of Biological Chemistry, 290(5), 3106-3120. doi:10.1074/jbc.m114.593707Buchmann, R. C., Asad, S., Wolf, J. N., Mohannath, G., & Bisaro, D. M. (2009). Geminivirus AL2 and L2 Proteins Suppress Transcriptional Gene Silencing and Cause Genome-Wide Reductions in Cytosine Methylation. Journal of Virology, 83(10), 5005-5013. doi:10.1128/jvi.01771-08Soitamo, A. J., Jada, B., & Lehto, K. (2012). Expression of geminiviral AC2 RNA silencing suppressor changes sugar and jasmonate responsive gene expression in transgenic tobacco plants. BMC Plant Biology, 12(1), 204. doi:10.1186/1471-2229-12-204Zhang, Z., Chen, H., Huang, X., Xia, R., Zhao, Q., Lai, J., … Xie, Q. (2011). BSCTV C2 Attenuates the Degradation of SAMDC1 to Suppress DNA Methylation-Mediated Gene Silencing in Arabidopsis    . The Plant Cell, 23(1), 273-288. doi:10.1105/tpc.110.081695Várallyay, É., Válóczi, A., Ágyi, Á., Burgyán, J., & Havelda, Z. (2010). Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. The EMBO Journal, 29(20), 3507-3519. doi:10.1038/emboj.2010.215Várallyay, É., & Havelda, Z. (2013). Unrelated viral suppressors of RNA silencing mediate the control of ARGONAUTE1 level. Molecular Plant Pathology, 14(6), 567-575. doi:10.1111/mpp.1202

    Antiproton-nucleus electromagnetic annihilation as a way to access the proton timelike form factors

    Full text link
    Contrary to the reaction pbar + p --> e+ e- with a high momentum incident antiproton on a free target proton at rest, in which the invariant mass M of the (e+ e-) pair is necessarily much larger than the (pbar p) mass, in the reaction pbar + d --> n e+ e- the value of M can take values near or below the (pbar p) mass. In the antiproton-deuteron electromagnetic annihilation, this allows to access the proton electromagnetic form factors in the time-like region of q^2 near the (pbar p) threshold. We estimate the cross section dsigma(pbar +d --> e+ e- n)/dM for an antiproton beam momentum of 1.5 GeV/c. We find that near the (pbar p) threshold this cross section is about 1 pb/MeV. The case of heavy nuclei target is also discussed. Elements of experimental feasibility are presented for the process pbar + d --> n e+ e- in the context of the Panda project.Comment: 14 pages, 11 figures. submitted to EPJ
    corecore