8 research outputs found

    Hierarchically modelling Kepler dwarfs and subgiants to improve inference of stellar properties with asteroseismology

    Get PDF
    This work is a part of a project that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (CartographY; grant agreement ID 804752). AJL, GRD, and WJC acknowledge the support of the Science and Technology Facilities Council. DH acknowledges support from the Alfred P. Sloan Foundation, the National Aeronautics and Space Administration (80NSSC19K0597), and the National Science Foundation (AST-1717000). MBN acknowledges support from the UK Space Agency. RAG acknowledges the funding from the PLATO CNES grant.With recent advances in modelling stars using high-precision asteroseismology, the systematic effects associated with our assumptions of stellar helium abundance (Y) and the mixing-length theory parameter (αMLT) are becoming more important. We apply a new method to improve the inference of stellar parameters for a sample of Kepler dwarfs and subgiants across a narrow mass range (⁠0.8<M<1.2M⊙). In this method, we include a statistical treatment of Y and the αMLT. We develop a hierarchical Bayesian model to encode information about the distribution of Y and αMLT in the population, fitting a linear helium enrichment law including an intrinsic spread around this relation and normal distribution in αMLT. We test various levels of pooling parameters, with and without solar data as a calibrator. When including the Sun as a star, we find the gradient for the enrichment law, ΔY/ΔZ=1.05+0.28−0.25 and the mean αMLT in the population, Όα=1.90+0.10−0.09, Όα=1.90+0.10−0.09⁠. While accounting for the uncertainty in Y and αMLT, we are still able to report statistical uncertainties of 2.5 per cent in mass, 1.2 per cent in radius, and 12 per cent in age. Our method can also be applied to larger samples that will lead to improved constraints on both the population level inference and the star-by-star fundamental parameters.Publisher PDFPeer reviewe

    Detection and Characterization of Oscillating Red Giants: First Results from the TESS Satellite

    Get PDF
    Since the onset of the "space revolution" of high-precision high-cadence photometry, asteroseismology has been demonstrated as a powerful tool for informing Galactic archeology investigations. The launch of the NASA Transiting Exoplanet Survey Satellite (TESS) mission has enabled seismic-based inferences to go full sky—providing a clear advantage for large ensemble studies of the different Milky Way components. Here we demonstrate its potential for investigating the Galaxy by carrying out the first asteroseismic ensemble study of red giant stars observed by TESS. We use a sample of 25 stars for which we measure their global asteroseimic observables and estimate their fundamental stellar properties, such as radius, mass, and age. Significant improvements are seen in the uncertainties of our estimates when combining seismic observables from TESS with astrometric measurements from the Gaia mission compared to when the seismology and astrometry are applied separately. Specifically, when combined we show that stellar radii can be determined to a precision of a few percent, masses to 5%-10%, and ages to the 20% level. This is comparable to the precision typically obtained using end-of-mission Kepler data

    Modelling stars with Gaussian Process Regression: augmenting stellar model grid

    No full text
    International audienceGrid-based modelling is widely used for estimating stellar parameters. However, stellar model grid is sparse because of the computational cost. This paper demonstrates an application of a machine-learning algorithm using the Gaussian Process (GP) Regression that turns a sparse model grid on to a continuous function. We train GP models to map five fundamental inputs (mass, equivalent evolutionary phase, initial metallicity, initial helium fraction, and the mixing-length parameter) to observable outputs (effective temperature, surface gravity, radius, surface metallicity, and stellar age). We test the GP predictions for the five outputs using off-grid stellar models and find no obvious systematic offsets, indicating good accuracy in predictions. As a further validation, we apply these GP models to characterize 1000 fake stars. Inferred masses and ages determined with GP models well recover true values within one standard deviation. An important consequence of using GP-based interpolation is that stellar ages are more precise than those estimated with the original sparse grid because of the full sampling of fundamental inputs

    TESS asteroseismology of the known planet host star λ 2Fornacis

    No full text
    [Context] The Transiting Exoplanet Survey Satellite (TESS) is observing bright known planet-host stars across almost the entire sky. These stars have been subject to extensive ground-based observations, providing a large number of radial velocity measurements.[Aims] The objective of this work is to use the new TESS photometric observations to characterize the star λ2 Fornacis, and following this to update the parameters of the orbiting planet λ2 For b.[Methods] We measured the frequencies of the p-mode oscillations in λ2 For, and in combination with non-seismic parameters estimated the stellar fundamental properties using stellar models. Using the revised stellar properties and a time series of archival radial velocities from the UCLES, HIRES and HARPS instruments spanning almost 20 years, we refit the orbit of λ2 For b and searched the residual radial velocities for remaining variability.[Results] We find that λ2 For has a mass of 1.16 ± 0.03 M⊙ and a radius of 1.63 ± 0.04 R⊙, with an age of 6.3 ± 0.9 Gyr. This and the updated radial velocity measurements suggest a mass of λ2 For b of 16.8−1.3+1.2 M⊕, which is ∌5M⊕ less than literature estimates. We also detect an additional periodicity at 33 days in the radial velocity measurements, which is likely due to the rotation of the host star.[Conclusions] While previous literature estimates of the properties of λ2 For are ambiguous, the asteroseismic measurements place the star firmly at the early stage of its subgiant evolutionary phase. Typically only short time series of photometric data are available from TESS, but by using asteroseismology it is still possible to provide tight constraints on the properties of bright stars that until now have only been observed from the ground. This prompts a reexamination of archival radial velocity data that have been accumulated in the past few decades in order to update the characteristics of the planet hosting systems observed by TESS for which asteroseismology is possible.AHMJT and MRS have benefited from funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 803193/BEBOP). Funding for the Stellar Astrophysics Centre is funded by the Danish National Research Foundation (Grant agreement no.: DNRF106). ZÇO, MY, and SÖ acknowledge the Scientific and Technological Research Council of Turkey (TÜB˙TAK:118F352). AS acknowledges support from grants ESP2017-82674-R (MICINN) and 2017-SGR-1131 (Generalitat Catalunya). TLC acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie grant agreement No. 792848 (PULSATION). This work was supported by FCT/MCTES through national funds (UID/FIS/04434/2019). MD is supported by FCT/MCTES through national funds (PIDDAC) by this grant UID/FIS/04434/2019. MD and MV are supported by FEDER - Fundo Europeu de Desenvolvimento Regional through COMPETE2020 - Programa Operacional Competitividade e Internacionalização by these grants: UID/FIS/04434/2019; PTDC/FIS-AST/30389/2017 & POCI-01-0145-FEDER-030389 & POCI-01-0145-FEDER03038. MD is supported in the form of a work contract funded by national funds through Fundação para a CiĂȘncia e Tecnologia (FCT). SM acknowledges support by the Spanish Ministry with the Ramon y Cajal fellowship number RYC-2015-17697. BM and RAG acknowledge the support of the CNES/PLATO grant. DLB and LC acknowledge support from the TESS GI Program under awards 80NSSC18K1585 and 80NSSC19K0385. LGC thanks the support from grant FPI-SO from the Spanish Ministry of Economy and Competitiveness (MINECO) (research project SEV-2015-0548-17-2 and predoctoral contract BES-2017-082610). Funding for the TESS mission is provided by the NASA Explorer Program. Based in part on data acquired at the Anglo-Australian Telescope. We acknowledge the traditional owners of the land on which the AAT stands, the Gamilaraay people, and pay our respects to elders past and present. The data presented herein were in part obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community

    Detection and Characterization of Oscillating Red Giants: First Results from the TESS Satellite

    Get PDF
    International audienceSince the onset of the "space revolution" of high-precision high-cadence photometry, asteroseismology has been demonstrated as a powerful tool for informing Galactic archeology investigations. The launch of the NASA Transiting Exoplanet Survey Satellite (TESS) mission has enabled seismic-based inferences to go full sky—providing a clear advantage for large ensemble studies of the different Milky Way components. Here we demonstrate its potential for investigating the Galaxy by carrying out the first asteroseismic ensemble study of red giant stars observed by TESS. We use a sample of 25 stars for which we measure their global asteroseimic observables and estimate their fundamental stellar properties, such as radius, mass, and age. Significant improvements are seen in the uncertainties of our estimates when combining seismic observables from TESS with astrometric measurements from the Gaia mission compared to when the seismology and astrometry are applied separately. Specifically, when combined we show that stellar radii can be determined to a precision of a few percent, masses to 5%–10%, and ages to the 20% level. This is comparable to the precision typically obtained using end-of-mission Kepler data
    corecore