71 research outputs found

    Surface modified hybrid ZnSnO3 nanocubes for enhanced piezoelectric power generation and wireless sensory application

    Get PDF
    Piezoelectric Nanogenerators (PENGs), which can convert ambient mechanical stimuli into electrical energy, are held in high regard due to their cost-effectiveness, energy harvesting applications, and potential as self-powered sensors. We report an aluminum-doped zinc stannate (ZnSnO3) PENG that can achieve high electrical outputs with respect to the external force. In order to enrich the piezoelectric mechanics, a low-temperature solution method was adopted in our work to synthesize ZnSnO3 nanocubes with an average side length of only 30 – 55 nm. Furthermore, ZnSnO3 was doped with 1 wt% to 5 wt% of aluminum nanoparticles. We report that 2 wt% of aluminum doped ZnSnO3 showed the highest electrical output in terms of open circuit voltages and short circuit current. The nanogenerator device achieved an average open-circuit voltage of 80 V to 175 V with a frequency range of 60 BPM (Beats Per Minute) to 240 BPM, an unprecedented electrical output in comparison to current ZnSnO3 -based PENGs. With the presented high output-to-size ratio taken into consideration, the device was mounted in a helmet and tested as an energy harvester and wireless human motion sensor, which can generate electric charge as well as detect human movements and transmit the corresponding signals wirelessly. Our work- is indicative of a promising smart helmet using organic-inorganic hybrid materials

    Piezo-Tribo Dual Effect Hybrid Nanogenerators for Health Monitoring

    Get PDF
    Over the years, nanogenerators for health monitoring have become more and more attractive as they provide a cost-effective and continuous way to successfully measure vital signs, physiological status, and environmental changes in/around a person. Using such sensors can positively affect the way healthcare workers diagnose and prevent life-threatening conditions. Recently, the dual piezo-tribological effect of hybrid nanogenerators (HBNGs) have become a subject of investigation, as they can provide a substantial amount of data, which is significant for healthcare. However, real-life exploitation of these HBNGs in health monitoring is still marginal. This review covers piezo-tribo dual-effect HBNGs that are used as sensors to measure the different movements and changes in the human body such as blood circulation, respiration, and muscle contractions. Piezo-Tribo dual-effect HBNGs are applicable within various healthcare settings as a means of powering noninvasive sensors, providing the capability of constant patient monitoring without interfering with the range of motion or comfort of the user. This review also intends to suggest future improvements in HBNGs. These include incorporating surface modification techniques, utilizing nanowires, nanoparticle technologies, and other means of chemical surface modifications. These improvements can contribute significantly in terms of the electrical output of the HBNGs and can enhance their prospects of applications in the field of health monitoring, as well as various in vitro/in vivo biomedical applications. While a promising option, improved HBNGs are still lacking. This review also discusses the technical issue which has prevented so far, the real use of these sensors

    Investigation of K+K− interactions via femtoscopy in Pb-Pb collisions at √sNN = 2.76 TeV at the CERN Large Hadron Collider

    No full text
    Femtoscopic correlations of non-identical charged kaons (K+K−) are studied in Pb−Pb collisions at a center-of-mass energy per nucleon−nucleon collision sNN−−−√=2.76 TeV by ALICE at the LHC. One-dimensional K+K− correlation functions are analyzed in three centrality classes and eight intervals of particle-pair transverse momentum. The LednickĂœ and Luboshitz interaction model used in the K+K− analysis includes the final-state Coulomb interactions between kaons and the final-state interaction through a0(980) and f0(980) resonances. The mass of f0(980) and coupling were extracted from the fit to K+K− correlation functions using the femtoscopic technique for the first time. The measured mass and width of the f0(980) resonance are consistent with other published measurements. The height of the ϕ(1020) meson peak present in the K+K− correlation function rapidly decreases with increasing source radius, qualitatively in agreement with an inverse volume dependence. A phenomenological fit to this trend suggests that the ϕ(1020) meson yield is dominated by particles produced directly from the hadronization of the system. The small fraction subsequently produced by FSI could not be precisely quantified with data presented in this paper and will be assessed in future work

    Two-particle transverse momentum correlations in pp and p-Pb collisions at energies available at the CERN Large Hadron Collider

    No full text
    Two-particle transverse momentum differential correlators, recently measured in Pb-Pb collisions at LHC energies, provide an additional tool to gain insights into particle production mechanisms and infer transport properties, such as the ratio of shear viscosity to entropy density, of the medium created in Pb-Pb collisions. The longitudinal long-range correlations and the large azimuthal anisotropy measured at low transverse momenta in small collision systems, namely pp and p-Pb, at LHC energies resemble manifestations of collective behaviour. This suggests that locally equilibrated matter may be produced in these small collision systems, similar to what is observed in Pb-Pb collisions. In this work, the same two-particle transverse momentum differential correlators are exploited in pp and p-Pb collisions at s√=7 TeV and sNN−−−√=5.02 TeV, respectively, to seek evidence for viscous effects. Specifically, the strength and shape of the correlators are studied as a function of the produced particle multiplicity to identify evidence for longitudinal broadening that might reveal the presence of viscous effects in these smaller systems. The measured correlators and their evolution from pp and p-Pb to Pb-Pb collisions are additionally compared to predictions from Monte Carlo event generators, and the potential presence of viscous effects is discussed

    Measurement of the lifetime and Λ separation energy of 3ΛH

    No full text
    The most precise measurements to date of the 3ΛH lifetime τ and Λ separation energy BΛ are obtained using the data sample of Pb-Pb collisions at √= 5.02 TeV collected by ALICE at the LHC. The 3ΛH is reconsNN structed via its charged two-body mesonic decay channel (3ΛH→ 3He + π− and the charge-conjugate process). The measured values τ=[253±11 (stat.)±6 (syst.)] ps and BΛ=[102±63 (stat.)±67 (syst.)] keV are compatible with predictions from effective field theories and confirm that the 3ΛH structure is consistent with a weakly-bound system

    Symmetry plane correlations in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    A newly developed observable for correlations between symmetry planes, which characterize the direction of the anisotropic emission of produced particles, is measured in Pb-Pb collisions at sNN−−−√=2.76 TeV with ALICE. This so-called Gaussian Estimator allows for the first time the study of these quantities without the influence of correlations between different flow amplitudes. The centrality dependence of various correlations between two, three and four symmetry planes is presented. The ordering of magnitude between these symmetry plane correlations is discussed and the results of the Gaussian Estimator are compared with measurements of previously used estimators. The results utilizing the new estimator lead to significantly smaller correlations than reported by studies using the Scalar Product method. Furthermore, the obtained symmetry plane correlations are compared to state-of-the-art hydrodynamic model calculations for the evolution of heavy-ion collisions. While the model predictions provide a qualitative description of the data, quantitative agreement is not always observed, particularly for correlators with significant non-linear response of the medium to initial state anisotropies of the collision system. As these results provide unique and independent information, their usage in future Bayesian analysis can further constrain our knowledge on the properties of the QCD matter produced in ultrarelativistic heavy-ion collisions

    Measurement of the radius dependence of charged-particle jet suppression in Pb–Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    The ALICE Collaboration reports a new differential measurement of inclusive jet suppression using pp and Pb–Pb collision data at center-of-mass energy per nucleon–nucleon collision sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV. Charged-particle jets are reconstructed using the anti-kTk_{\rm T} algorithm with resolution parameters RR = 0.2, 0.3, 0.4, 0.5, and 0.6 in pp collisions and RR = 0.2, 0.4, 0.6 in central (0–10\%), semi-central (30–50\%), and peripheral (60–80\%) Pb–Pb collisions. The analysis uses a novel approach based on machine learning to mitigate the influence of jet background in central heavy-ion collisions, which enables measurements of inclusive jet suppression for jet pT≄40p_{\rm T} \ge 40 GeV/cc in central collisions at a resolution parameter of RR = 0.6. This is the lowest value of jet pTp_{\rm T} achieved for inclusive jet measurements at RR = 0.6 at the LHC, and is an important step for discriminating different models of jet quenching in the quark-gluon plasma. The transverse momentum spectra, nuclear modification factors, and derived cross section and nuclear modification factor ratios for different jet resolution parameters of charged-particle jets are presented and compared to model predictions. A mild dependence of the nuclear modification factor ratios on collision centrality and resolution parameter is observed. The results are compared to a variety of jet quenching models with varying levels of agreement, demonstrating the effectiveness of this observable to discriminate between models.The ALICE Collaboration reports a new differential measurement of inclusive jet suppression using pp and Pb−-Pb collision data at center-of-mass energy per nucleon-nucleon collision sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV. Charged-particle jets are reconstructed using the anti-kTk_{\rm T} algorithm with resolution parameters R=R = 0.2, 0.3, 0.4, 0.5, and 0.6 in pp collisions and R=R = 0.2, 0.4, 0.6 in central (0−-10%), semi-central (30−-50%), and peripheral (60−-80%) Pb−-Pb collisions. The analysis uses a novel approach based on machine learning to mitigate the influence of jet background in central heavy-ion collisions, which enables measurements of inclusive jet suppression for jet pT≄40p_{\rm T} \geq 40 GeV/cc in central collisions at a resolution parameter of R=0.6R = 0.6. This is the lowest value of jet pTp_{\rm T} achieved for inclusive jet measurements at R=0.6R=0.6 at the LHC, and is an important step for discriminating different models of jet quenching in the quark-gluon plasma. The transverse momentum spectra, nuclear modification factors, and derived cross section and nuclear modification factor ratios for different jet resolution parameters of charged-particle jets are presented and compared to model predictions. A mild dependence of the nuclear modification factor ratios on collision centrality and resolution parameter is observed. The results are compared to a variety of jet quenching models with varying levels of agreement, demonstrating the effectiveness of this observable to discriminate between models

    Performance of the ALICE Electromagnetic Calorimeter

    Get PDF
    International audienceThe performance of the electromagnetic calorimeter of theALICE experiment during operation in 2010–2018 at the Large HadronCollider is presented. After a short introduction into the design,readout, and trigger capabilities of the detector, the proceduresfor data taking, reconstruction, and validation are explained. Themethods used for the calibration and various derived corrections arepresented in detail. Subsequently, the capabilities of thecalorimeter to reconstruct and measure photons, light mesons,electrons and jets are discussed. The performance of thecalorimeter is illustrated mainly with data obtained with test beamsat the Proton Synchrotron and Super Proton Synchrotron or inproton-proton collisions at √s = 13 TeV, and compared tosimulations

    Neutron emission in ultraperipheral Pb-Pb collisions at sNN\sqrt {s_{NN}} = 5.02 TeV

    No full text
    In ultraperipheral collisions (UPCs) of relativistic nuclei without overlap of nuclear densities, the two nuclei are excited by the Lorentz-contracted Coulomb fields of their collision partners. In these UPCs, the typical nuclear excitation energy is below a few tens of MeV, and a small number of nucleons are emitted in electromagnetic dissociation (EMD) of primary nuclei, in contrast to complete nuclear fragmentation in hadronic interactions. The cross sections of emission of given numbers of neutrons in UPCs of 208^{208}Pb nuclei at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02~TeV were measured with the neutron zero degree calorimeters (ZDCs) of the ALICE detector at the LHC, exploiting a similar technique to that used in previous studies performed at sNN=2.76\sqrt{s_{\mathrm{NN}}}=2.76~TeV. In addition, the cross sections for the exclusive emission of 1, 2, 3, 4 and 5 forward neutrons in the EMD, not accompanied by the emission of forward protons, and thus mostly corresponding to the production of 207,206,205,204,203^{207,206,205,204,203}Pb, respectively, were measured for the first time. The predictions from the available models describe the measured cross sections well. These cross sections can be used for evaluating the impact of secondary nuclei on the LHC components, in particular, on superconducting magnets, and also provide useful input for the design of the Future Circular Collider (FCC-hh).In ultraperipheral collisions (UPCs) of relativistic nuclei without overlap of nuclear densities, the two nuclei are excited by the Lorentz-contracted Coulomb fields of their collision partners. In these UPCs, the typical nuclear excitation energy is below a few tens of MeV, and a small number of nucleons are emitted in electromagnetic dissociation (EMD) of primary nuclei, in contrast to complete nuclear fragmentation in hadronic interactions. The cross sections of emission of given numbers of neutrons in UPCs of Pb208 nuclei at sNN=5.02 TeV were measured with the neutron zero degree calorimeters (ZDCs) of the ALICE detector at the LHC, exploiting a similar technique to that used in previous studies performed at sNN=2.76 TeV. In addition, the cross sections for the exclusive emission of one, two, three, four, and five forward neutrons in the EMD, not accompanied by the emission of forward protons, and thus mostly corresponding to the production of Pb207,206,205,204,203, respectively, were measured for the first time. The predictions from the available models describe the measured cross sections well. These cross sections can be used for evaluating the impact of secondary nuclei on the LHC components, in particular, on superconducting magnets, and also provide useful input for the design of the Future Circular Collider (FCC-hh).In ultraperipheral collisions (UPCs) of relativistic nuclei without overlap of nuclear densities, the two nuclei are excited by the Lorentz-contracted Coulomb fields of their collision partners. In these UPCs, the typical nuclear excitation energy is below a few tens of MeV, and a small number of nucleons are emitted in electromagnetic dissociation (EMD) of primary nuclei, in contrast to complete nuclear fragmentation in hadronic interactions. The cross sections of emission of given numbers of neutrons in UPCs of 208^{208}Pb nuclei at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV were measured with the neutron zero degree calorimeters (ZDCs) of the ALICE detector at the LHC, exploiting a similar technique to that used in previous studies performed at sNN=2.76\sqrt{s_{\mathrm{NN}}}=2.76 TeV. In addition, the cross sections for the exclusive emission of one, two, three, four, and five forward neutrons in the EMD, not accompanied by the emission of forward protons, and thus mostly corresponding to the production of 207,206,205,204,203^{207,206,205,204,203}Pb, respectively, were measured for the first time. The predictions from the available models describe the measured cross sections well. These cross sections can be used for evaluating the impact of secondary nuclei on the LHC components, in particular, on superconducting magnets, and also provide useful input for the design of the Future Circular Collider (FCC-hh)

    Azimuthal correlations of heavy-flavor hadron decay electrons with charged particles in pp and p–Pb collisions at sNN\pmb {\sqrt{s_{\mathrm{{NN}}}}} = 5.02 TeV

    No full text
    • 

    corecore