424 research outputs found
Map challenge: Analysis using a pair comparison method based on Fourier shell correlation
This document presents the analysis performed over the Map Challenge dataset using a new algorithm which we refer to as Pair Comparison Method. The new algorithm, which is described in detail in the text, is able to sort reconstructions based on a figure of merit and assigns a level of significance to the sorting. That is, it shows how likely the sorting is due to chance or if it reflects real differencesThe authors would like to acknowledge economical support from: The Spanish Ministry of Economy and Competitiveness through Grants BIO2013-44647-R, BIO2016-76400-R(AEI/FEDER, UE) and AEI/FEDER BFU 2016 74868P, the Comunidad Autónoma de Madrid through Grant: S2017/BMD-3817, European Union (EU) and Horizon 2020 through grant CORBEL (INFRADEV-1-2014-1, Proposal: 654248). This work used the EGI Infrastructure and is co-funded by the EGI-Engage project (Horizon 2020) under Grant No. 654142. European Union (EU) and Horizon 2020 through grant West-Life (EINFRA-2015-1, Proposal: 675858) European Union (EU) and Horizon 2020 through grant Elixir - EXCELERATE (INFRADEV-3-2015, Proposal: 676559) European Union (EU) and Horizon 2020 through grant iNEXT (INFRAIA-1–2014-2015, Proposal: 653706). The authors acknowledge the support and the use of resources of Instruct, a Landmark ESFRI projec
Advances in image processing for single-particle analysis by electron cryomicroscopy and challenges ahead
Electron cryomicroscopy (cryo-EM) is essential for the study and functional understanding of non-crystalline macromolecules such as proteins. These molecules cannot be imaged using X-ray crystallography or other popular methods. CryoEM has been successfully used to visualize molecules such as ribosomes, viruses, and ion channels, for example. Obtaining structural models of these at various conformational states leads to insight on how these molecules function. Recent advances in imaging technology have given cryo-EM a scientific rebirth. Because of imaging improvements, image processing and analysis of the resultant images have increased the resolution such that molecular structures can be resolved at the atomic level. Cryo-EM is ripe with stimulating image processing challenges. In this article, we will touch on the most essential in order to build an accurate structural three-dimensional model from noisy projection images. Traditional approaches, such as k-means clustering for class averaging, will be provided as background. With this review, however, we will highlight fresh approaches from new and varied angles for each image processing sub-problem, including a 3D reconstruction method for asymmetric molecules using just two projection images and deep learning algorithms for automated particle picking. Keywords: Cryo-electron microscopy, Single Particle Analysis, Image processing algorithms
Structural basis for cooperativity of human monoclonal antibodies to meningococcal factor H-binding protein
Monoclonal antibody (mAb) cooperativity is a phenomenon triggered when mAbs couples promote increased bactericidal killing compared to individual partners. Cooperativity has been deeply investigated among mAbs elicited by factor H-binding protein (fHbp), a Neisseria meningitidis surface-exposed lipoprotein and one of the key antigens included in both serogroup B meningococcus vaccine Bexsero and Trumenba. Here we report the structural and functional characterization of two cooperative mAbs pairs isolated from Bexsero vaccines. The 3D electron microscopy structures of the human mAb-fHbp-mAb cooperative complexes indicate that the angle formed between the antigen binding fragments (fAbs) assume regular angle and that fHbp is able to bind simultaneously and stably the cooperative mAbs pairs and human factor H (fH) in vitro. These findings shed light on molecular basis of the antibody-based mechanism of protection driven by simultaneous recognition of the different epitopes of the fHbp and underline that cooperativity is crucial in vaccine efficacy
CentrosomeDB: a human centrosomal proteins database
Active research on the biology of the centrosome during the past decades has allowed the identification and characterization of many centrosomal proteins. Unfortunately, the accumulated data is still dispersed among heterogeneous sources of information. Here we present centrosome:db, which intends to compile and integrate relevant information related to the human centrosome. We have compiled a set of 383 likely human centrosomal genes and recorded the associated supporting evidences. Centrosome:db offers several perspectives to study the human centrosome including evolution, function and structure. The database contains information on the orthology relationships with other species, including fungi, nematodes, arthropods, urochordates and vertebrates. Predictions of the domain organization of centrosome:db proteins are graphically represented at different sections of the database, including sets of alternative protein isoforms, interacting proteins, groups of orthologs and the homologs identified with blast. Centrosome:db also contains information related to function, gene–disease associations, SNPs and the 3D structure of proteins. Apart from important differences in the coverage of the set of centrosomal genes, our database differentiates from other similar initiatives in the way information is treated and analyzed. Centrosome:db is publicly available at http://centrosome.dacya.ucm.es
Organising multi-dimensional biological image information: The BioImage Database
Nowadays it is possible to unravel complex information at all levels of cellular organization by obtaining multi-dimensional image information. at the macromolecular level, three-dimensional (3D) electron microscopy, together with other techniques, is able to reach resolutions at the nanometer or subnanometer level. The information is delivered in the form of 3D volumes containing samples of a given function, for example, the electron density distribution within a given macromolecule. The same situation happens at the cellular level with the new forms of light microscopy, particularly confocal microscopy, all of which produce biological 3D volume information. Furthermore, it is possible to record sequences of images over time (videos), as well as sequences of volumes, bringing key information on the dynamics of living biological systems. It is in this context that work on bioimage started two years ago, and that its first version is now presented here. In essence, Bioimage is a database specifically designed to contain multi-dimensional images, perform queries and interactively work with the resulting multi-dimensional information on the World Wide Web, as well as accomplish the required cross-database links. Two sister home pages of bioimage can be accessed at http://www.bioimage.org and http://www-embl.bioimage.or
SENT: semantic features in text
We present SENT (semantic features in text), a functional interpretation tool based on literature analysis. SENT uses Non-negative Matrix Factorization to identify topics in the scientific articles related to a collection of genes or their products, and use them to group and summarize these genes. In addition, the application allows users to rank and explore the articles that best relate to the topics found, helping put the analysis results into context. This approach is useful as an exploratory step in the workflow of interpreting and understanding experimental data, shedding some light into the complex underlying biological mechanisms. This tool provides a user-friendly interface via a web site, and a programmatic access via a SOAP web server. SENT is freely accessible at http://sent.dacya.ucm.es
Pea PSII-LHCII supercomplexes form pairs by making connections across the stromal gap
In higher plant thylakoids, the heterogeneous distribution of photosynthetic protein complexes is a determinant for the formation of grana, stacks of membrane discs that are densely populated with Photosystem II (PSII) and its light harvesting complex (LHCII). PSII associates with LHCII to form the PSII-LHCII supercomplex, a crucial component for solar energy conversion. Here, we report a biochemical, structural and functional characterization of pairs of PSII-LHCII supercomplexes, which were isolated under physiologically-relevant cation concentrations. Using single-particle cryo-electron microscopy, we determined the three-dimensional structure of paired C2S2M PSII-LHCII supercomplexes at 14 angstrom resolution. The two supercomplexes interact on their stromal sides through a specific overlap between apposing LHCII trimers and via physical connections that span the stromal gap, one of which is likely formed by interactions between the N-terminal loops of two Lhcb4 monomeric LHCII subunits. Fast chlorophyll fluorescence induction analysis showed that paired PSII-LHCII supercomplexes are energetically coupled. Molecular dynamics simulations revealed that additional flexible physical connections may form between the apposing LHCII trimers of paired PSII-LHCII supercomplexes in appressed thylakoid membranes. Our findings provide new insights into how interactions between pairs of PSII-LHCII supercomplexes can link adjacent thylakoids to mediate the stacking of grana membranes
Can we identify individuals with an ALPL variant in adults with persistent hypophosphatasaemia?
Hypophosphatasia (HPP) is an inborn error of metabolism characterized by low levels of serum alkaline phosphatase (ALP). Scarce evidence exists about features that should signal the potential association between hypophosphatasaemia and HPP in adults. The aim of this study is to estimate the prevalence of ALPL variants in subjects with persistent hypophosphatasaemia and determine the associated clinical and laboratory features. For this cross-sectional study, laboratory records of 386,353 subjects were screened by measurement of ALP activity. A total of 85 (0.18%) subjects with persistent hypophosphatasaemia (≥2 serum alkaline phosphatase-ALP-measurements ≤35 IU/L and none > 45 IU/L) were included (secondary causes previously discarded). ALPL genetic testing and a systematized questionnaire to retrieve demographic, clinical and laboratory data were performed. Descriptive analysis and logistic regression models were employed to identify the clinical and laboratory characteristics associated with ALPL variants. Results: Forty subjects (47%) had a variant(s) in ALPL. With regard to clinical characteristics, the presence of an ALPL variant was significantly associated only with musculoskeletal pain (OR: 7.6; 95% IC: 1.9-30.9). Nevertheless, a trend to present more dental abnormalities (OR: 3.6; 95% IC: 0.9-13.4) was observed. Metatarsal stress fractures were also more frequent (4 vs 0; p < 0.05) in this group. Regarding laboratory features, median ALP levels were lower in subjects with ALPL variants (26 vs 29 IU/L; p < 0.005). Interestingly, the threshold of ALP levels < 25 IU/L showed a specificity, positive predictive value and positive likelihood ratio of 97.8, 94.4% and 19.8 to detect a positive ALPL test, respectively. Conclusions: In subjects with persistent hypophosphatasaemia -secondary causes excluded- one out of two presented ALPL variants. Musculoskeletal pain and ALP levels < 25 IU/L are associated with this variant(s). In this scenario, ALP levels < 25 IU/L seem to be very useful to identify individuals with the presence of an ALPL variantGenetic testing was supported by a grant from Alexion Pharmaceuticals Inc., which had no role in the study design or data analysi
- …