387 research outputs found

    Lumazine Synthase Protein Nanoparticle-Gd(III)-DOTA Conjugate as a T1 contrast agent for high-field MRI

    Get PDF
    With the applications of magnetic resonance imaging (MRI) at higher magnetic fields increasing, there is demand for MRI contrast agents with improved relaxivity at higher magnetic fields. Macromolecule-based contrast agents, such as protein-based ones, are known to yield significantly higher r(1) relaxivity at low fields, but tend to lose this merit when used as T-1 contrast agents (r(1)/r(2) = 0.5 similar to 1), with their r(1) decreasing and r(2) increasing as magnetic field strength increases. Here, we developed and characterized an in vivo applicable magnetic resonance (MR) positive contrast agent by conjugating Gd(III)-chelating agent complexes to lumazine synthase isolated from Aquifex aeolicus (AaLS). The r(1) relaxivity of Gd(III)-DOTA-AaLS-R108C was 16.49 mM(-1)s(-1) and its r(1)/r(2) ratio was 0.52 at the magnetic field strength of 7 T. The results of 3D MR angiography demonstrated the feasibility of vasculature imaging within 2 h of intravenous injection of the agent and a significant reduction in T-1 values were observed in the tumor region 7 h post-injection in the SCC-7 flank tumor model. Our findings suggest that Gd(III)-DOTA-AaLS-R108C could serve as a potential theranostic nanoplatform at high magnetic field strength.open0

    Physicochemical Characterization, and Relaxometry Studies of Micro-Graphite Oxide, Graphene Nanoplatelets, and Nanoribbons

    Get PDF
    The chemistry of high-performance magnetic resonance imaging contrast agents remains an active area of research. In this work, we demonstrate that the potassium permanganate-based oxidative chemical procedures used to synthesize graphite oxide or graphene nanoparticles leads to the confinement (intercalation) of trace amounts of Mn2+ ions between the graphene sheets, and that these manganese intercalated graphitic and graphene structures show disparate structural, chemical and magnetic properties, and high relaxivity (up to 2 order) and distinctly different nuclear magnetic resonance dispersion profiles compared to paramagnetic chelate compounds. The results taken together with other published reports on confinement of paramagnetic metal ions within single-walled carbon nanotubes (a rolled up graphene sheet) show that confinement (encapsulation or intercalation) of paramagnetic metal ions within graphene sheets, and not the size, shape or architecture of the graphitic carbon particles is the key determinant for increasing relaxivity, and thus, identifies nano confinement of paramagnetic ions as novel general strategy to develop paramagnetic metal-ion graphitic-carbon complexes as high relaxivity MRI contrast agents

    Gd(III) complexes intercalated into hydroxy double salts as potential MRI contrast agents

    Get PDF
    The ion exchange intercalation of two Gd-based magnetic resonance imaging contrast agents into hydroxy double salts (HDSs) is reported. The presence of Gd3+ diethylenetriaminepentaacetate and Gd3+ diethylenetriaminepenta(methylenephosphonate) complexes in the HDS lattice after intercalation was confirmed by microwave plasma-atomic emission spectroscopy. The structural aspects of the HDS-Gd composites were studied by X-ray diffraction, with the intercalates having an interlayer spacing of 14.5–18.6 Å. Infrared spectroscopy confirmed the presence of characteristic vibration peaks associated with the Gd3+ complexes in the intercalation compounds. The proton relaxivities of the Gd3+ complex-loaded composites were 2 to 5-fold higher in longitudinal relaxivity, and up to 10-fold higher in transverse relaxivity, compared to solutions of the pure complexes. These data demonstrate that the new composites reported here are potentially potent MRI contrast agents

    The High Radiosensitizing Efficiency of a Trace of Gadolinium-Based Nanoparticles in Tumors

    Get PDF
    International audienceWe recently developed the synthesis of ultrasmall gadolinium-based nanoparticles (GBN), (hydrodynamic diameter <5 nm) characterized by a safe behavior after intravenous injection (renal clearance, preferential accumulation in tumors). Owing to the presence of gadolinium ions, GBN can be used as contrast agents for magnetic resonance imaging (MRI) and as radiosensitizers. The attempt to determine the most opportune delay between the intravenous injection of GBN and the irradiation showed that a very low content of radiosensitizing nanoparticles in the tumor area is sufficient (0.1 μg/g of particles, i.e. 15 ppb of gadolinium) for an important increase of the therapeutic effect of irradiation. Such a promising and unexpected result is assigned to a suited distribution of GBN within the tumor, as revealed by the X-ray fluorescence (XRF) maps

    Magnetic resonance imaging (MRI) contrast agents for tumor diagnosis

    Get PDF
    10.1260/2040-2295.4.1.23Journal of Healthcare Engineering4123-4

    CMR Assessment of endothelial damage and angiogenesis in porcine coronary arteries using gadofosveset

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endothelial damage and angiogenesis are essential for atherosclerotic plaque development and destabilization. We sought to examine whether contrast enhanced cardiovascular magnetic resonance (CMR) using gadofosveset could show endothelial damage and neovessel formation in balloon injured porcine coronary arteries.</p> <p>Methods and Results</p> <p>Data were obtained from seven pigs that all underwent balloon injury of the left anterior descending coronary artery (LAD) to induce endothelial damage and angiogenesis. Between one - 12 days (average four) after balloon injury, in vivo and ex vivo T1-weighted coronary CMR was performed after intravenous injection of gadofosveset. Post contrast, CMR showed contrast enhancement of the coronary arteries with a selective and time-dependent average expansion of the injured LAD segment area of 45% (p = 0.04; CI<sub>95 </sub>= [15%-75%]), indicating local extravasation of gadofosveset. Vascular and perivascular extravasation of albumin (marker of endothelial leakiness) and gadofosveset was demonstrated with agreement between Evans blue staining and ex vivo CMR contrast enhancement (p = 0.026). Coronary MRI contrast enhancement and local microvessel density determined by microscopic examination correlated (ρ = 0.82, p < 0.001).</p> <p>Conclusion</p> <p>Contrast enhanced coronary CMR with gadofosveset can detect experimentally induced endothelial damage and angiogenesis in the porcine coronary artery wall.</p

    Scaling behaviour for the water transport in nanoconfined geometries

    Get PDF
    The transport of water in nanoconfined geometries is different from bulk phase and has tremendous implications in nanotechnology and biotechnology. Here molecular dynamics is used to compute the self-diffusion coefficient D of water within nanopores, around nanoparticles, carbon nanotubes and proteins. For almost 60 different cases, D is found to scale linearly with the sole parameter theta as D(theta)=DB[1+(DC/DB-1)theta], with DB and DC the bulk and totally confined diffusion of water, respectively. The parameter theta is primarily influenced by geometry and represents the ratio between the confined and total water volumes. The D(theta) relationship is interpreted within the thermodynamics of supercooled water. As an example, such relationship is shown to accurately predict the relaxometric response of contrast agents for magnetic resonance imaging. The D(theta) relationship can help in interpreting the transport of water molecules under nanoconfined conditions and tailoring nanostructures with precise modulation of water mobility
    corecore