178 research outputs found

    Anisotropic eddy viscosity models

    Get PDF
    A general discussion on the structure of the eddy viscosity tensor in anisotropic flows is presented. The systematic use of tensor symmetries and flow symmetries is shown to reduce drastically the number of independent parameters needed to describe the rank 4 eddy viscosity tensor. The possibility of using Onsager symmetries for simplifying further the eddy viscosity is discussed explicitly for the axisymmetric geometry

    Relaxation times for Hamiltonian systems

    Get PDF
    Usually, the relaxation times of a gas are estimated in the frame of the Boltzmann equation. In this paper, instead, we deal with the relaxation problem in the frame of the dynamical theory of Hamiltonian systems, in which the definition itself of a relaxation time is an open question. We introduce a lower bound for the relaxation time, and give a general theorem for estimating it. Then we give an application to a concrete model of an interacting gas, in which the lower bound turns out to be of the order of magnitude of the relaxation times observed in dilute gases.Comment: 26 page

    Dissipation scales of kinetic helicities in turbulence

    Full text link
    A systematic study of the influence of the viscous effect on both the spectra and the nonlinear fluxes of conserved as well as non conserved quantities in Navier-Stokes turbulence is proposed. This analysis is used to estimate the helicity dissipation scale which is shown to coincide with the energy dissipation scale. However, it is shown using the decomposition of helicity into eigen modes of the curl operator, that viscous effects have to be taken into account for wave vector smaller than the Kolomogorov wave number in the evolution of these eigen components of the helicity.Comment: 6 pages, 2 figures, submited to Po

    Dynamo Transition in Low-dimensional Models

    Full text link
    Two low-dimensional magnetohydrodynamic models containing three velocity and three magnetic modes are described. One of them (nonhelical model) has zero kinetic and current helicity, while the other model (helical) has nonzero kinetic and current helicity. The velocity modes are forced in both these models. These low-dimensional models exhibit a dynamo transition at a critical forcing amplitude that depends on the Prandtl number. In the nonhelical model, dynamo exists only for magnetic Prandtl number beyond 1, while the helical model exhibits dynamo for all magnetic Prandtl number. Although the model is far from reproducing all the possible features of dynamo mechanisms, its simplicity allows a very detailed study and the observed dynamo transition is shown to bear similarities with recent numerical and experimental results.Comment: 7 page

    Ensemble averaged dynamic modeling

    Get PDF
    The possibility of using the information from simultaneous equivalent Large Eddy Simulations (LAS) for improving the subgrid scale modeling is investigated. An ensemble average dynamic model is proposed as an alternative to the usual spatial average versions. It is shown to be suitable independently of the existence of any homogeneity directions, and its formulation is thus universal. The ensemble average dynamic model is shown to give very encouraging results for as few as 16 simultaneous LES's

    Correcting cold wire measurements in isotropic turbulence with a DNS database

    Get PDF
    We estimate the effect of the finite spatial resolution of a cold wire for scalar measurements, using a database from direct numerical simulations (DNS). These are for homogeneous isotropic turbulence at low Taylor-microscale Reynolds number (≃ 42) and Schmidt number unity. Correction factors for the scalar variance, scalar mean dissipation rate, and mixed velocity-scalar derivative skewness are evaluated, for a sensor length of up to 15 times the Batchelor length scale. The largest attenuation effect is found on the dissipation rate, followed by the scalar variance. The mixed skewness,which is affected the least, is overestimated

    Gyrokinetic Large Eddy Simulations

    Full text link
    The Large Eddy Simulation (LES) approach is adapted to the study of plasma microturbulence in a fully three-dimensional gyrokinetic system. Ion temperature gradient driven turbulence is studied with the {\sc GENE} code for both a standard resolution and a reduced resolution with a model for the sub-grid scale turbulence. A simple dissipative model for representing the effect of the sub-grid scales on the resolved scales is proposed and tested. Once calibrated, the model appears to be able to reproduce most of the features of the free energy spectra for various values of the ion temperature gradient

    Boundary effects on the dynamics of chains of coupled oscillators

    Full text link
    We study the dynamics of a chain of coupled particles subjected to a restoring force (Klein-Gordon lattice) in the cases of either periodic or Dirichlet boundary conditions. Precisely, we prove that, when the initial data are of small amplitude and have long wavelength, the main part of the solution is interpolated by a solution of the nonlinear Schr\"odinger equation, which in turn has the property that its Fourier coefficients decay exponentially. The first order correction to the solution has Fourier coefficients that decay exponentially in the periodic case, but only as a power in the Dirichlet case. In particular our result allows one to explain the numerical computations of the paper \cite{BMP07}

    Free energy cascade in gyrokinetic turbulence

    Full text link
    In gyrokinetic theory, the quadratic nonlinearity is known to play an important role in the dynamics by redistributing (in a conservative fashion) the free energy between the various active scales. In the present study, the free energy transfer is analyzed for the case of ion temperature gradient driven turbulence. It is shown that it shares many properties with the energy transfer in fluid turbulence. In particular, one finds a forward (from large to small scales), extremely local, and self-similar cascade of free energy in the plane perpendicular to the background magnetic field. These findings shed light on some fundamental properties of plasma turbulence, and encourage the development of large eddy simulation techniques for gyrokinetics.Comment: 4 pages, 2 Postscript figure
    corecore