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Anisotropic eddy viscosity models

By D. Carati 1 AND W. Cabot 2

A general discussion on the structure of the eddy viscosity tensor in anisotropic flows

is presented. The systematic use of tensor symmetries and flow symmetries is shown

to reduce drastically the number of independent parameters needed to describe

the rank 4 eddy viscosity tensor. The possibility of using Onsager symmetries for

simplifying further the eddy viscosity is discussed explicitly for the axisymmetric

geometry.

1. Introduction

Contrary to most of the works presented in this volume, this note does not re-

sult from a planned project for the summer program. It developed instead from

discussions during the course of the workshop by many participants concerning the

representation of anisotropy in the modeling of the subgrid-scale stress in Large

Eddy Simulation (LES). This study is thus an attempt to present a systematic dis-

cussion of the influence of anisotropy on the structure of the eddy viscosity tensor.

Some of the results presented here are not really original since they have been de-

rived in other contexts (viscoelastic media or magnetized plasmas). However, we

found several motivations for reproducing the general study of tensor symmetries

in the special case of the eddy viscosity tensor.

First, we remark that there is often evidence of anisotropy at the subgrid level.

The most obvious case arises when the grid itself is anisotropic. In that case, even

if the flow does satisfy the classical local isotropy assumption, the subgrid velocity

would be anisotropic by construction. Since most LES's use a non-uniform grid

with anisotropic stretching, the effects of anisotropy should be taken into account

in a very wide class of problems.

Second, the discussions we had during the workshop showed that few attempts

have been made to introduce the anisotropy at the tensor level in the relation be-

tween the subgrid scale stress and the resolved strain tensor. On the contrary, most

of the studies on the influence of anisotropy have focused on possible modifications

to tile isotropic eddy viscosity amplitude (Deardorff, 1970, 1971; Scotti et al., 1993).

Finally, the development of the dynamic procedure (Germano, 1992; Ghosal et

al., 1995; Lilly, 1992) allows the introduction of multi-parameter models for tile

subgrid scale stress. Therefore, there is no practical reason for practitioners to limit

their models to an isotropic eddy viscosity.
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2. Anisotropic eddy viscosity

In this work we only consider the subgrid scale modeling of an incompressible

fluid. If the exact description of the large scale pressure is not required, the trace

of the subgrid scale tensor may be added to the pressure, which is then calculated

in order to ensure the incompressibility. The only tensor that needs to be modeled
is

1

T5 = u,u# - - 5 - (2.1)

The usual modeling procedure consists in giving an expression for r_ in terms of the

spatial derivatives of the resolved velocity field 0,W i. These quantities are usually
decomposed into a symmetric resolved strain tensor,

= + 0:,),

and an antisymmetric resolved rotation tensor,

(2.2)

-- 1 1

Rij = _ (O,_j - 0j_,) = _eijk_k, (2.3)

where _l, is the vorticity and e,ik is the Levi-Civita fully antisymmetric tensor with

e123 = 1. The most general tensorial relation in an anisotropic system thus reads:

r_ = viikI-Skt + P,jkt-Rkt. (2.4)

For three dimensional turbulence, a naive analysis of this relation would lead to the

conclusion that both u and/_ are described by 81 independent parameters. However,

very_strong simplifications_ can be derived by using the tensor symmetry properties of

r_j, Sij and RU, as well as the symmetries of the flow. These simplifications do not

require any assumption (as far as the model (2.4) is accepted). A more debatable

simplification might apply if the Onaager reciprocal symmetries (Onsager, 1931) are

assumed to hold for the eddy viscosity tensors. This will be discussed at the end of
this section.

2.1 Tensor symmetries

The tensors r_ and Sij are symmetric and traceless while the tensor Ri) is an-

tisymmetric. This implies that the eddy viscosity tensor vijkt has the following

properties:

1/ijkl = l/jikl ,

I/ijkl _ l/ijlk ,

v.tt = 0, (2.5)

l/ijkk = O.

Thus, for a given value of (k, l) : (k*, l*), the matrix aU = viik. t. is traceless and

symmetric. Consequently, it has 5 independent components. Similarly, for a given
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value of (i, j) = (i*, j*), the matrix bkl = vi.j* kl is also traceless and symmetric. The

full tensor vijkt is thus described by 5 × 5 = 25 independent parameters. The same

analysis can be performed for the tensor pijkl, which has the following symmetries:

{_ijkl = _jikl ,

_ijkl = --_ijlk , (2.6)

Piikt = O.

Now, the tensor #ijkl is symmetric and traceless for its first two indices, while

it is antisymmetric for its last two indices. Consequently, the full tensor pijkl is
described by 5 × 3 = 15 independent parameters.

2.2 Flow symmetries

This 25+15 parameter eddy viscosity tensor may be strongly simplified by using

the symmetries of the flow. Let us consider some simple cases.

2.2.1 Isotropic turbulence

Any isotropic tensor can only be constructed with the unit tensor 6ij. Thus, the
most general isotropic tensor of rank 4 can be written as follows:

Tijk! = alt_ijtSkl + a2_ik_jl + a3_il_jk • (2.7)

If we impose the symmetry relations (2.5), it turns out that the eddy viscosity
tensor u reduces to

uijkl = -a 8ik_jl + 8ilSjk - _Sij$kl , (2.8)

while the symmetry relations (2.6) imply that the tensor/_ vanishes. Consequently,
the subgrid scale stress reads:

ri*j = -2aSij, (2.9)

where a is the usual isotropic eddy viscosity (Smagorinsky, 1963).

The simplest anisotropic situation arises when only one direction can be distin-

guished from the other. This axisymmetric geometry is thus characterized by a

vector pointing to the anisotropy direction. We will show that the nature of this

vector will strongly affect the structure of the eddy viscosity tensor. In particular,
anisotropy induced by a pseudovector (like a magnetic field or a rotation) must

be treated differently from the anisotropy induced by an axial vector (like a mean
flow).

2.2.2 Axisymmetry induced by an axial vector

We first consider the case of an axisymmetry characterized by an axial vector n.

An axisymmetric tensor of rank 4 can only be a function of this vector n and of the

unit tensor 8ij. Its most general form, compatible with the symmetry between the
first two indices, reads:
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T[jtd = bl _ijcSkl + b2 (_SiktSfl 4- _il_jt)

+ bacSijnknt + b4ninjcSkt + b5 (_Sitnjnt + ¢Sjknint) (2.10)

+ b6 (_Sanjnk + _Sjlnink) + bTn_njnknt.

Imposing the constraints (2.5) and defining b2 = -Cl, b6 = -c2 and b7 = -ca lead

to the following expressions:

bl -- (6cl - 4c2n 2 - c3n4)/9,

ba = b4 = (4c2 + c3n2)/3, (2.11)

b5 = --C2.

If the constraints (2.6) are imposed on #ijkt, only two parameters are different

from zero and are opposite (b5 -- -b6). Thus, by introducing b5 = Ca in p, the

subgrid-scale stress reads:

2

r_*j=--2cl-S,j--2c2(nl_j+_,nj--_,Tknk )
(2.12)

1

"t_ijn2 2c4 niFj ,--c3 (ninJ -- 3 ) sknk -- (Fini + )

where gi = -Siknk and gi = Riknt. The effect on the resolved energy balance of the

first three terms is fully determined by the sign of the parameters cl, c2, and c3.

Indeed, these terms correspond to dissipation (resp. creation) of resolved energy if

and only if cl, c2, and c3 are positive (resp. negative). On the contrary, the sign of

the term proportional to c4 in the resolved energy balance depends simultaneously

on the sign of C 4 and on the flow through the factor skrk:

r._S,j : -cl IS[ 2 - 4c2_ 2 - c3(-sknk) 2 -- 4C4Skrk. (2.13)

If the anisotropy is weak (n is relatively small), only terms up to n 2 must be retained;

since si, ri = O(n), the term proportional to c3 can be neglected in this case.

2.2.3 Axisymmetry induced by a pseudovector

We now consider that the anisotropy direction is represented by a pseudovector

p. The most general axisymmetric tensor of rank 4 will be a function of the vector

pi, the unit tensor 6ij, and the Levi-Civita tensor _ijk. The situation is thus more

complicated and more parameters need to be introduced. The notations will be

simplified by introducing the antisymmetric tensor Vij= eijkPk so that the most

general tensor compatible with the symmetry between the first two indices reads:

T[jkl = dl_ij_kl -4-d2 ( _ik_jl 4- _il_jk ) 4- d3_ij Vkl q- d4 (_ik_)l + _jk Vit)

+ d5 (¢_aVjk + ¢_flVik) + d6 (eittpj + CjklPi) + dv6ijpkpt + dsPiPj6kt

+ d9 (_ikPjPl + t51tPiPt) 4- dlo (_itPjPk 4- ¢_jtPiPk)

+ dll (VikVjl + VitVjk) + d12 (Vit, pjpt + Vfl, pipt)

+ d13 (Vitpjpk + Vjtpipk) + dl4PipjVt, t + dlspip)pkpt.

(2.14a)
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We will not discuss the complete tensor T" with 15 independent parameters. Let

us assume that the anisotropy is weak enough to keep only terms proportional to

the vector pi. In this case, T" reduces to

T[jkl ,_ dl_,j_kl q- d2 (6,k6fl + 6a6jk )

+ d36ijVkt + d4 (6ikVjt + 6jkVil) (2.14b)

+ ds (6ilWjk "4- 6jzWik) -_- d6 (eiklPj "4- ejklPi) •

Imposing the constraints (2.5) and defining d2 = -el, d5 = -e2 and d6 = -Ca lead

to the following expression:

dl = 2el/3,

d3 = 2e3, (2.15)

d4 =--2e3 -- e2,

while imposing the constraints (2.6) with the new definition d_ = -e4, and d6 = -e5

leads to

dl = d2 = O,

d3 = (2e5 - 4e4)/3, (2.16)

d4 = e4 •

The subgrid scale stress thus reads:

f (2.17 )
"4-2(C4 -]-e5)_ Rik wjk "4-Rjk Vik - 3 / "

Although the total eddy viscosity contains 5 parameters, only three of them appear

independently in the expression for ri_. Let us note that the expression of ri_ can

be simplified by using the resolved vorticity:

( ) (2.17b)+ 2(e4 + es) wiPj -t- _jPi -- _ijwkpk •

It is interesting to note that the anisotropic corrections appear at first order in the

anisotropy direction pi. Thus, we conclude that a pseudovector anisotropy (like a

rotation or a magnetic field) should affect the eddy viscosity more rapidly than an

axial vector anisotropy (like a grid or a flow anisotropy).

2.30nsager reciprocal symmetries

Strictly speaking, the Onsager reciprocal symmetries do not apply to turbulence.

Indeed, they have been derived for describing the irreversible return to equilibrium

in macroscopic system, and they strongly rely on the microscopic reversibility of

particle motions as well as on the linearity of the transport laws. However, in an
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attempt to simplify the eddy viscosity picture as much as possible, it is tempting

to assume the existence of such relations for the tensors v and p. We will not try

to justify further the use of such relations and present the form of the eddy viscos-

ity tensors fulfilling these relations as a approximate simplification. The Onsager

reciprocal relation will imply the following additional relations:

vi)kl(n) = vklij(n),

/qjkt(n) = pk.j(n), (2.18)
vi)kl(p) = Vk.)(--p),

Pi)kl(P) : ftklij(--P).

When applied to the previous results, these relations imply c4 = 0 and e5 = -e4.

Thus, they strongly simplify the tensor fti.ik I but they do not affect the tensor vijkl
in the case presented here.

3. Anisotropic eddy viscosity and dynamic model

It has been mentioned in the introduction that the use of the dynamic proce-

dure gives a direct access to a multiple-parameter eddy viscosity. In this section

we present the dynamic derivation of the eddy viscosity tensor in the simplest

anisotropic geometry: the weak axisymmetric anisotropy induced by an axial vec-

tor. Moreover, the problem is further simplified by assuming the existence of On-

sager symmetries for the tensor vi.jkl and t,tijkl. In that case, we have shown in the

previous section that the subgrid stress tensor reduces to

where

(3.1)

u

-IIS,_= 2n---_1(n,-gimt + niS.n_) - _n2Sktn,n_6,_ . (3.2)

--± --]1
With the new tensort S 0 = SO - Sij and the parameters va = ca + 2n2c2 and

v2 = cl, the subgrid stress tensor may be rewritten as

-ll -±
r_ = -2va Si) - 2v2Sij. (3.3)

With this formulation, the resolved energy dissipation reads e = -r,_-Sij = vl Rl +
v2 R2, where

_ --II s 2

Ra = Z SijSi) = n-_ ->0, (3.4a)
i)

(3.4b)

This notation should not lead to the conclusion that and Sit are orthogonal. It is easy to
--I[ --±

show that )-']ij SijSij ¢ 0 in general.
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The last inequality is a direct consequence of the Cauchy-Schwartz inequality :

(3.5)

Sufficient conditions for having a positive resolved energy dissipation are thus b' 1 __) 0

and u2 _> 0. In order to devise the simplest dynamic procedure, we suppose that

both ua and u2 scale following the Kolmogorov law:

//1 = -CIA 4/3 , (3.60)

l/2 : -C2A 4/3 . (3.6b)

The choice for the length scale A in C1 and C2 (which are not dimensionless) is

unimportant because the dynamic model will take care of the amplitudes. Only the

power 4/3 is important. With these definitions, the model becomes

Yij ----- ClPij + C2rlij , (3.7)

where

--9 4/3--11
PO = -A S O, (3.8a)

^.1_

710 = - 2_ 4 /3-S 0 . (3.8b)

Assuming a volume-averaged version of the dynamic model, the error with respect

to the Germano identity is given by (Germano, 1992; Ghosal et al., 1995; Lilly,

1992):

where

Eli(el,C2) =- Lij -t- C1M 0 + C2Nij , (3.9)

,_4/3 )_11
Alij = -2 A 4/a (11 --_ ,-ij,

^2

Nij = --2 A 4/3 (1 - o_4/3)Sij ,

(3.10)

where a is the ratio between test and grid filters. By minimizing E_j, we have the
two coupled equations:

<LoMo) + C,(MoMo) + C2<NijMo) = O,

(LoNo) + C, <MoNo) + C2(NijNij) = O.
(3.11)

Since Mij is not aligned with Nij, these two equations are not linearly proportional

and they may be used for determining both Cl and C2.
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FIGURE 1. Comparison of tile grid anisotropy described in terms of the grid

spacing in each direction vs. the flow anisotropy described in terms of the square

root of the diagonal components of the Leonard tensor. Clearly, the flow anisotropy

is only important close to the wall in the streamwise direction. The grid anisotropy

is also more important close to the wall, but mainly in the wall-normal direction.

a) Dx+:-- ; Dy+:---- ; Dz+: .... . b) Square root of Lxx: ; square root

of Lyy: .... ; square root of Lzz:------

4. Application to the channel flow

The dynamic formulation presented in the previous section has been implemented

for channel flow with a friction Reynolds number of 1030 (cf. Cabot, 1994). The

weak axisymmetric anisotropy is probably a very rough approximation for the chan-

nel geometry, so that the results presented here must be regarded as very prelimi-

nary tests. Moreover, it is not clear in channel flow which direction is the dominant

anisotropic one (see Fig. 1 ). Indeed, channel flow is characterized by two anisotropic
directions: the streamwise and the wall-normal directions. Both choices for n have

been tested.

The rms values of streamwise velocity component (u') are presented in Fig. 2.

The rms values of the wall-normal and spanwise velocity components (v t and w t)

seem to be insensitive to the model and are not shown here. It appears that the

results from the isotropic model and the anisotropic model based on the wall-normal

direction are almost indistinguishable. The results for the anisotropic model based

on the streamwise direction seem to be better close to the wall. This could indicate

that the flow anisotropy has more influence than the grid anisotropy. However, no

definitive conclusion can be made since the model based on the streamwise direction

does not perform well in the core region. Also, preliminary results indicate a long-

time lack of stability for this latter model.

Finally, we present the results for the two eddy viscosity coefficients (ul and _2)

in Fig. 3. For both models, the condition of positive dissipation (Ul _> 0 and v2 >_ 0)

are mostly well satisfied. It is not yet known if the weakly negative values of u_ in

the model based on tile streamwise direction are responsible for its lack of stability.
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FIGURE 2. Comparison of profiles for the rms of streamwise velocity (u') between

experimental data the isotropic dynamic model and two versions of the anisotropic

dynamic model based on the streamwise and wall-normal anisotropy directions.

Experimental data (Hussain & Reynolds, 1970):o ; isotropic LES:-- ; anisotropic

LES (n=str.dir.): .... ; anisotropic LES (n=wall norm. dir.):

6.0 ,

4.0 t ,,".%-
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Comparison of eddy viscosity coefficients in three different models.

b'1 .... , /12 i;

FIGURE 3.

Isotropic model: v - t _ ; anisotropic model (streamwise):

anisotropic model (wall normal): Vl .... , v2 •

5. Discussion

The use of an anisotropic eddy viscosity model has been shown to complicate

dramatically the relation between the subgrid stress tensor and the resolved velocity

derivatives. In particular, in the fully anisotropic geometry, 40 independent effective

transport coefficients must be introduced. However, when some approximations are

used, it is possible to simplify the problem drastically. As an example, we have

tested the weakly anisotropic axisymmetrical geometry. In that case, the eddy
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viscosity tensor reduces to a two parameter quantity. A dynamic procedure has

been proposed for this problem and some tests have been made in channel flow.

These numerical tests have clearly shown that tile determination of the anisotropy

direction remains an important issue in the simplified anisotropic model presented

in §3. Indeed, even when the flow is fully anisotropic, the model discussed in §3 may

be regarded as the first tensorial invariant correction to the isotropic eddy viscosity.

The use of this model could then be seen as the result of a "local axisymmetric

assumption" which should be at least as robust as the local isotropic assumption.

However, in that case it is probably crucial to chose tile vector n in an appropriate

way. It is also possible that the vector n varies with space. An interesting exten-

sion to this work would be the derivation of a dynamic procedure giving explicit

expressions not only for the eddy viscosity amplitudes but also for the vector n.

At this point the simplest test for anisotropic models would be the homogeneous

rotating turbulence. In that case, the anisotropy direction is clearly determined and

is given in terms of the rotation pseudovector.
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