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Ensemble averaged dynamic modeling

By D. Caratil_ A. Wray 2 AND W. Cabot 3

The possibility of using the information from simultaneous equivalent large eddy

simulations for improving the subgrid scale modeling is investigated. An ensemble

average dynamic model is proposed as an alternative to the usual spatial average

versions. It is shown to be suitable independently of the existence of any homogene-

ity directions, and its formulation is thus universal. The ensemble average dynamic

model is shown to give very encouraging results for as few as 16 simultaneous LES's.

1. Introduction

The equation for large eddy simulation (LES) is obtained by applying a spatial

filter to the Navier-Stokes equation. The LES equation thus describes the evolution

of a filtered velocity field ui which explicitly depends on the small scales through

the subgrid scale stress rij = uiuj - ui uj:

+ = -&-p + v0V2 , - O r,j. (1.1)

For simplicity, we only consider incompressible flows. The pressure p is then chosen

to satisfy the incompressibility condition. Clearly, rij is a large scale quantity

depending mainly on the small scale velocity field. However, it is usually modeled

as a function of the resolved velocity field as in the Smagorinsky eddy viscosity

model (Smagorinsky, 1963):

1

r,j - -2c 2ISl&i, (1.2)

where -Sit = ]l (c3i_j + i)j_i) and ISI = (2SijSij) 1/2. In the original formulation

of the Smagorinsky model, the parameter C must be obtained from some fitting

procedure. Recently, this model has been improved by the introduction of the

dynamic procedure, which allows a self calibration of the parameter C and gives

an explicit expression as a function of the resolved field C = C(_k). However, any

procedure that determines the subgrid scale stress in terms of the resolved field can

only be an approximation. Indeed, the same resolved field may be compatible with

many different small scale velocity fields. This is reflected in the a priori tests which

show very poor correlations between the models vii _ riM(_k) and the actual rij

obtained from direct numerical simulations (see Winckelmans et al, in this volume).
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Clearly more information is needed to properly reconstruct the subgrid-scale

stress. The introduction of stochastic model for ri_ is a first attempt to intro-

duce models that are not fully determined by the resolved field (Carati et al, 1995;

Chasnov, 1991; Leith, 1990; Mason & Thomson, 1992). Here, we explore another

approach which consists in running simultaneously several statistically equivalent

LES's and constructing the model by using information from the set of resolved

velocity fields:

0t_ + 0j_" = -Oi_ r + v0V2_'_ - Ojri_j r = 1,..., R. (1.3)A

Here, r is a new index corresponding to the realization and R is the total number of

realizations. The concept of statistically equivalent LES's will be defined in Section

3. The model we propose to test should generalize the classical subgrid scale model

(r_ = r_(_)) by allowing an explicit dependence on the velocity field from other
members in the set:

r5 = (1.4)

Clearly, in that case the subgrid scale model in the LES labeled r will not be a

function of the resolved velocity field _ only.

In the following section, we will present the dynamic procedure and its general-

ization to several LES's. We also pl:esent an alternative formalism to the classical

dynamic model. Some results for decaying and forced isotropic turbulence and for
channel flow are discussed.

2. The dynamic procedure

The dynamic procedure is based on an exact relation between subgrid scale

stresses for different filter widths (Germano, 1992; Ghosal et al 1995; Lilly, 1992).

This relation is obtained by introducing a second filter Gt, usually referred to as

the test filter, denoted by ^; we will call the original filter G1. The application of

this new filter to Eq. (1.1) yields:

(2.1)

where Lij = _i_j--ffi _j is the Leonard tensor. This equation governs the evolution

of the field u obtained by the application of the filter G2 - Gt * G1 to the fully

resolved velocity. Thus, an equivalent equation should be obtained by applying G2

directly to the Navier-Stokes equation:

O,u, + 0jujui = -Oi_ + v0V2ui - OjTij. (2.2)

A A

Here, the subgrid stress tensor is defined by T,j = _i uj - ui uj. The comparison

between equations (2.1) and (2.2) readily leads to the Germano identity:

Lij + r_j - Tij = 0. (2.3)
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When approximate models r 0 _ ri_ z and Tij _ Ti_ I are used, this identity is

violated. However, the error Eij- Lij + r'i}! - Ti_ I _k 0 may be used to calibrate

the models. When the Smagorinsky model is used at both grid and test levels, the

error is a linear fimction of the Smagorinsky parameter:

A

Eij = Lij + C_ij -- Co_ij (2.4)

where

A 2 _ A

aij =--2/-_ [S[Sij

The calibration of C is usually achieved by using a least square method for mini-

mizing Eij. The integral

,[C] =/v dy _ E_j(y) (2.5)

is thus minimized with respect to C.

A first difficulty encountered when using the dynamic procedure for determining

C has been pointed out by Ghosal et al (1993,1995), who showed that this procedure

requires the solution of an integral equation for C unless both of the following

conditions are satisfied:

1. There are one or more directions of homogeneity in the flow.

2. The flow is fully resolved in the other direction(s).

In that case, C is assumed to be constant along the direction of homogeneity and

can be taken out of the test filter operation". Moreover, the flow being fully resolved

in the other direction(s), the test filter must only act in the homogeneous direction.

The error (2.4) then reduces to:

Ei i = Lit + CMij (2.6)

A

where -_gO = aij -flii and the dynamic prediction for C reads:

where the brackets ( )h represent a spatial average in the homogeneous direction(s).

If the two aforementioned conditions for replacing expression (2.4) by (2.6) are not

fulfilled, one could argue that C is slowly varying in space and that (2.6) should be

a valid approximation independently of the existence of a direction of homogeneity.

The minimization of the global quantity I[C] then leads to a local ext)ression for C:
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Unfortunately, this approximation has proved to be very poor, and the result-

ing C depends strongly on space. Since in ahnost all LES's at least one of the

aforementioned conditions is violated, a mathematically clean implementation of

the dynamic model always requires the solution of an integral equation (Ghosal et

al. 1995).

A second difficulty with the dynanfic model is that C takes negative as well as

positive values. Positive values correspond to th(" classical eddy dissipation picture

for the sul)grid scales. The negative values were first interpreted as the capability

of the dynamic model to predict reverse energy transfi,r (backscatter). Unfortu-

nately, the modeling of backscatt(w by a negatiw" Snmgorinsky coet-ficient leads to

numerical instabilities. This problem is easily solved 1)y constraiifing a priori the

ininimization of I[C] so that only positive values of C are accepted. The resulting

C (obtained either by solving an integral equation ()r by using a spatial average) is

the sam(' as before but clipped to positive vahw. Thus, C must then be replaced

by (C + Ict)/2. Although this clipping procedur(' can be derived t)roperly from a

constrained minimization procedure, it is usually c(msidered an undesirable exten-

sion of the dynamic model. In particular, the clipping corresponds to turning off

the model where the dynamic procedure "tries to build a model for backseatter."

In some sense, the resulting model does not use all the informatioil available from

the dynamic procedure. Hence, it is desirable to have a dynamic model with as few

clipped values as possible for C.

We will discuss in the following sections how the simuh.aneous use of several

statistically equivalent LES's may solve these two difficulties.

3 Statistical LES & dynamic model

3.1 Definition of the em_emble.

We first discuss the problem of defining the ensemble of runs needed for the

statistical tests without considering the modeling problem. The equations (1.3)

correspond to R different LES's. In order to have a "good" ensemble, these LES's

should correspond to ,_tati.qtically equivalen_ and ._tati,_tically independent realiza-

tions of the same problem. Although these requirements are intuitively clear, it. is

worthwhile to define them as properly as possible. The first step consists in defining

precisely what is an "acceptable" sinmlation for a giw,n problem. From the strict

Inathenmtical point of view, a flow descrit)ed by the Navier-Stokcs equation or by

an LES equation is completely defined by the knowledge of

1. The domain 79 in which the flow is considered.

2. The conditions on the boundary 0_ of this domain u(0/), t) = f(t).

3. The initial conditions v(x, 0) = uo(x) Vx E _.

However, in a sinmlation of a turbulent flow only the domain and the boundary

conditions are rigorously fixed. Indeed, because of the lack of sensitivity to initial

conditions in a turbulent flow, (lifferent simulations with different initial conditions

sharing some properties are considered to characteriz(' the same flow. Thus, the
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requirement that the initial conditions are known is usually replaced by some weaker

constraints, and point (3) is replaced by

3'. The initial conditions v(x, 0) = v0(x; wt) are generated using random num-

bers u,t and satisfy some constraints: Ps[v0] = ps, s = 1,... S.

For example, in homogeneous turbulence, the first constraint s = 1 v`,ill be on

the spectrum of v0. For the channel flow, one could impose the profile of the

velocity and of the fluctuation in each direction. We will not discuss in detail the

minimal constraints that must be imposed on the initial conditions in order to have

a reasonable simulation. We only suppose that these constraints do exist. Nov,,, it

is possible to give some precise definition of the ensemble of LES's:

Definition 1: Two LES's are statistically equivalent if the domain of the flow

and the boundary conditions are exactly the same and if the initial

conditions satisfy the same set of constraints.

Definition 2: Two LES_ are statistically independent if the initial condition._

are generated with uncorrelated random numbers wt.

For a stationary flow, such equivalent and independent initial conditions can be

obtained by running a single LES and recording several velocity fields separated by

at least one large eddy turnover time when turbulence is fully developed.

3.2 Ensemble average dynamic model

In what follows, we will focus on a simple generalization of the Smagorinsky

model which reads:

- 3'-;k,% -2cA I IS; . (3.2.1)

Thus, we basically use the Smagorinsky model in every realization with the following

additional assumption :

Hypothesis I : The Smagorinsky coefficient is independent of the realization for sta-

tistically equivalent flows.

This assumption defines the model in such a way that the unknown parameter in

the LES is "universal". The formulation thus mixes some aspects of both LES and

Reynolds average simulations.

The dynamic procedure can also be used to determine C when several LES's are run

in parallel. In that case, the model depends on the resolved flow from other real-

izations (1.3). Indeed, the quantity that needs to be minimized is a straightforward

generalization of I[C]:

zlcl = (Eij(y)) (3.2.2)
JV

r ij

where now E# as well as Lit, flit, and crij depend on the realization (Ei_j = Lr, j +

C1_ _ _,-it - C 0)" We now make another assumption:
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Hypothesis 2: For large ensembles, the Smagorinsky coe]ficient is slowly dependent

on space and can be taken out of the test filter.

The quantity 2"[C] then reduces to

R

r r) 2z[cl = Z Z - c M,j ,
r= 1 ij

which leads to the same expression for C as in the spatial average version of the

dynamic procedure:

C- (L,jMij)

where now the brackets represent an ensemble average. We will see in the next

section that hypothesis 2 is very well justified by the numerical results.

3.3 Alternative formalism for the dynamic model

The usual formulation of LES Eq. (1.1) is not fully satisfactory because the evo-

lution of the filtered velocity is given in terms of quantities that are not filtered,

whereas all numerically computed quantities are filtered in some way. This is well

known, but, to our knowledge, its effect on the dynamic model formulation has

never been carefully considered. In this section, we propose an alternative dynamic

model formulation which should be fully self-consistent with the filtered equation

for the resolved field. First, we assume that all the quantities in the LES equation

are filtered and Eq. (1.1) must then be replaced by

0tg, = u0V2iT, - Oj_gui - OaTij - O/ft.

This redefines the subgrid scale stress as

(3.3.1)

B

rtj = u_uj -- ui uj

The application of the test filter to the LES equation (3.3.1) yields:

o,_,,+ o,(_j_,) = _,oV_ - o,_ - o_,j - oil,j,

and the comparison with the "one-step" application of Gz to a i leads to the following

equality:

Lij + Tij -- Tij = 0. (3.3.2)

where now

i

Lij = tt_ttj --u_uj,

Tij ='ui u j-ui u 1.
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At this point it is important to ensure that tile model for the subgrid scale is

also expressed in terms of a filtered quantity. The simplest gen.__._eralization of the

Smagorinsky model would then be ri--_ -= C_ij and Tij = Ca/j. The dynamic

procedure is then easily implemented and yields

A A

c- (L,,N,i>
(NijNij>

(3.3.3)

where _'Yij = _ij --aij. Of course, the expression (3.3.3) also relies oil the assumption

that C can be taken out from the filtering operators. This assumption is very

important here because, in the equality (3.3.2), the Smagorinsky coefficient only

appears in filtered quantities. This means that the integral equation fornmlation of

this alternative dynamic model would be much more complicated than the classical

formalism. However, if hypothesis 2 is valid, the present formalism appears to be

more consistent with the LES equation.

4. Test on isotropic turbulence

4.1 Decaying turbulence

The statistical average dynamic model described in section 3.1 has been tested

in decaying turbulence for 32 a LES. A first series of numerical experiments have

determined how large the ensemble of simultaneous LES's must be (i.e. how large

R should be). The criteria used to determine the minimal size of the ensemble were
focused on

1. The spatial variability of C.

2. The percentage of negative C.

3. Comparison with the volume average dynamic model.

4. Comparison with direct numerical simulations.

The first conclusion we have reached is quite encouraging. Indeed, it appears that

with only 16 simultaneous LES's, the ensemble average dynamic model performs as

well as the volume average model. The spatial variability of C decreases drastically

when R increases (see Fig. 1). This is also reflected on the probability distribution

function (PDF) of C (see Fig. 2).

The comparison between a 512 a DNS and dynamic model shows good agreement

both for the total resolved energy (see Fig. 3) and for the spectra. The results

for R = 16 are indistinguishable for the volume average and for the ensemble aver-

age. Here the comparison with the dynamic model has been made by running an

ensemble of unrelated volume average LES's. This allows comparison of the both

the means and the standard deviations. The standard deviations are computed for

the 3-d energy spectra at each k, and quantities such as total resolved energy and

compensated spectra are then computed from the mean and mean-t-a spectra.
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FIGURE 1. Typical profile of C in decaying isotrot)ic turbulence. R=I:--* -- ;

R=4:--¢I, -- ; R=16:--.
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FIGURE 2. PDF of C in decaying isotropic turbulence. Symbols as in Fig. 1.

4.2 Forced turbulence

We have run an ensemble of 32 a forced turbulence LES's with zero molecular

viscosity. Fig. 4 shows that the mean resolved energy and tile standard deviation

evolve in a very similar way for both the volume and the ensemble average models.
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FIGURE 3. Energy decay: comparison with DNS and volume average• DNS:-- ;
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FIGURE 4. Resolved energy in forced isotropic turbulence: average vs volmne.

Symbols as in Fig. 3, without DNS.
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FIGURE 5. Compensated energy spectrum in forced isotropic turbulence: average

vs volume. Symbols as in Fig. 3.

It is also very important to notice that the standard deviation saturates so that the

LES's in the ensenible do not evolve towards very diff'(Tent states.

It is also interesting to compare the compensated energy spectrum to check if an

inertial range is observed. Of course, with 32 :l LES, we (to not exI)ect to obtain

a very good estimate of the Kolmogorov constant• H()wever, the results in Fig. 5

show that the observed "Kohnogorov constant" is in a reasonable range of values.

These spectra are at tinlc _ 27 in the units of Fig. 4.

5. Tests in channel flow

We did not reach the stage of "production runs" for the channel flow, so the

tests presented here are very preliminary and have been focused on the behavior

of C as a function of the ensemble size (R). Tile data collected fi'om the runs

concern the PDF of C and the fraction of negative C. Because of the channel flow

inhomogeneity, the PDF of C depends on the wall normal coordinate. However.

the trends for increasing nmnbers of runs (R) is similar across the channel, and we

only present in Fig. 6 the results for y = 0.1 near midchannel.

We also show the fraction of negative C (Fig. 7). Since the channel flow silnula-

tions used in these tests have a non-zero inolecnlar viscosity, tile relevant stability

condition is the percentage of C leading to a total (nlolecular + eddy) negative

viscosity. Here again, the results are encouraging for R ,_ 1G (less than 15(7( of tile'

points need to be clipped) while the local version of the dynamic model for only

one LES requires about 40% clipping.



Ensemble averaged dynamic modeling 247

350

300

250

o 200

LL
C3
a. 150

100

50

- vvVVVVVV

-0.015 -0.010 -0.005 0.000 0.005 0.010 0.015
C

FIGURE 6. Probability distribution function of C for different ensemble sizes at

y=0.1. R=I:o;R=2:=;R=4:@ ;R=8;o;R=16:t_.
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FIGURE 7. Fraction of negative total viscosity as a function of y for different en-

semble sizes. Symbols as in Fig. 6.

6. Conclusion

The statistical tests presented in this report have shown that the knowledge of

statistically equivalent resolved velocity fields may be useful in deriving new subgrid
scale models. We have used the additional information available from the different

LES's to create an ensemble average version of the dynamic model. This dynamic

model has the following advantages:
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1. A local version of the ensemble average dynamic model may be derived in the

limit of large ensemble sets.

2. The local formulation does not rely on any homogeneity assumption. It can thus

be adapted to any geometry, unlike to the classical volume (or surface or line)

average dynamic model.

3. The theoretical limit of large ensemble sets is closely approached for R ._ 16.

This is indicated by tile PDF of C, which is very peaked for R = 16. Also, tile

spatial variations of C decrease drastically for increasing ensemble sizes and seem

to be quite mild for R = 16.

For the examples treated in this work (decaying and forced isotropic turbulence),

the volume average version of the dynamic model is justified. Remarkably, in those

cases, the results from the ensemble average and the volume average versions are

almost indistinguishable.

The next interesting step in the investigation of statistical LES is to apply this

model to fully inhomogeneous problems (for which the mathematically consistent

classical dynamic model requires the solution of an integral equation). The addi-

tional cost of multiple sinmltaneous LES's may be ameliorated by a reduction in

the time of simulation since the statistics should converge more rapidly.
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