282 research outputs found

    Multiple jejuno-jejunal fistulae of uncertain origin: a case report

    Get PDF
    A 43 year-old male patient presented with small bowel obstruction while being treated for cervical tuberculous lymphadenopathy. Laparotomy revealed multiple adhesions and multiple jejuno-jejunal fistulae. Absence of previous abdominal surgery or other abdominal insult favoured an 'idiopathic' origin of these unusual lesions, although treated tuberculosis may have been the underlying cause. To the best of our knowledge this intestinal condition has never previously been reported in the medical literature

    BCR-ABL1 tyrosine kinase sustained MECOM expression in chronic myeloid leukaemia

    Get PDF
    MECOM oncogene expression correlates with chronic myeloid leukaemia (CML) progression. Here we show that the knockdown of MECOM (E) and MECOM (ME) isoforms reduces cell division at low cell density, inhibits colony-forming cells by 34% and moderately reduces BCR-ABL1 mRNA and protein expression but not tyrosine kinase catalytic activity in K562 cells. We also show that both E and ME are expressed in CD34<sup>+</sup> selected cells of both CML chronic phase (CML-CP), and non-CML (normal) origin. Furthermore, MECOM mRNA and protein expression were repressed by imatinib mesylate treatment of CML-CP CD34<sup>+</sup> cells, K562 and KY01 cell lines whereas imatinib had no effect in non-CML BCR-ABL1 −ve CD34<sup>+</sup> cells. Together these results suggest that BCR-ABL1 tyrosine kinase catalytic activity regulates MECOM gene expression in CML-CP progenitor cells and that the BCR-ABL1 oncoprotein partially mediates its biological activity through MECOM. MECOM gene expression in CML-CP progenitor cells would provide an in vivo selective advantage, contributing to CML pathogenesis

    Sustained receptor activation and hyperproliferation in response to granulocyte colony-stimulating factor (G-CSF) in mice with a severe congenital neutropenia/acute myeloid leukemia-derived mutation in the G-CSF receptor gene

    Get PDF
    In approximately 20% of cases of severe congenital neutropenia (SCN), mutations are found in the gene encoding the granulocyte colony-stimulating factor receptor (G-CSF-R). These mutations introduce premature stop codons, which result in truncation of 82-98 COOH-terminal amino acids of the receptor. SCN patients who develop secondary myelodysplastic syndrome and acute myeloid leukemia almost invariably acquired a GCSFR mutation, suggesting that this genetic alteration represents a key step in leukemogenesis. Here we show that an equivalent mutation targeted in mice (gcsfr-Delta715) results in the selective expansion of the G-CSF- responsive progenitor (G-CFC) compartment in the bone marrow. In addition, in vivo treatment of gcsfr-Delta715 mice with G-CSF results in increased production of neutrophils leading to a sustained neutrophilia. This hyperproliferative response to G-CSF is accompanied by prolonged activation of signal transducer and activator of transcription (STAT) complexes and extended cell surface expression of mutant receptors due to defective internalization. In view of the continuous G-CSF treatment of SCN patients, these data provide insight into why progenitor cells expressing truncated receptors clonally expand in vivo, and why these cells may be targets for additional genetic events leading to leukemia

    Fusion and Fission of Genes Define a Metric between Fungal Genomes

    Get PDF
    Gene fusion and fission events are key mechanisms in the evolution of gene architecture, whose effects are visible in protein architecture when they occur in coding sequences. Until now, the detection of fusion and fission events has been performed at the level of protein sequences with a post facto removal of supernumerary links due to paralogy, and often did not include looking for events defined only in single genomes. We propose a method for the detection of these events, defined on groups of paralogs to compensate for the gene redundancy of eukaryotic genomes, and apply it to the proteomes of 12 fungal species. We collected an inventory of 1,680 elementary fusion and fission events. In half the cases, both composite and element genes are found in the same species. Per-species counts of events correlate with the species genome size, suggesting a random mechanism of occurrence. Some biological functions of the genes involved in fusion and fission events are slightly over- or under-represented. As already noted in previous studies, the genes involved in an event tend to belong to the same functional category. We inferred the position of each event in the evolution tree of the 12 fungal species. The event localization counts for all the segments of the tree provide a metric that depicts the “recombinational” phylogeny among fungi. A possible interpretation of this metric as distance in adaptation space is proposed

    Genome-Wide Analysis of Transcriptional Reprogramming in Mouse Models of Acute Myeloid Leukaemia

    Get PDF
    Acute leukaemias are commonly caused by mutations that corrupt the transcriptional circuitry of haematopoietic stem/progenitor cells. However, the mechanisms underlying large-scale transcriptional reprogramming remain largely unknown. Here we investigated transcriptional reprogramming at genome-scale in mouse retroviral transplant models of acute myeloid leukaemia (AML) using both gene-expression profiling and ChIP-sequencing. We identified several thousand candidate regulatory regions with altered levels of histone acetylation that were characterised by differential distribution of consensus motifs for key haematopoietic transcription factors including Gata2, Gfi1 and Sfpi1/Pu.1. In particular, downregulation of Gata2 expression was mirrored by abundant GATA motifs in regions of reduced histone acetylation suggesting an important role in leukaemogenic transcriptional reprogramming. Forced re-expression of Gata2 was not compatible with sustained growth of leukaemic cells thus suggesting a previously unrecognised role for Gata2 in downregulation during the development of AML. Additionally, large scale human AML datasets revealed significantly higher expression of GATA2 in CD34+ cells from healthy controls compared with AML blast cells. The integrated genome-scale analysis applied in this study represents a valuable and widely applicable approach to study the transcriptional control of both normal and aberrant haematopoiesis and to identify critical factors responsible for transcriptional reprogramming in human cancer

    The management of patients with primary chronic anal fissure: a position paper

    Get PDF
    Anal fissure is one of the most common and painful proctologic diseases. Its treatment has long been discussed and several different therapeutic options have been proposed. In the last decades, the understanding of its pathophysiology has led to a progressive reduction of invasive and potentially invalidating treatments in favor of conservative treatment based on anal sphincter muscle relaxation. Despite some systematic reviews and an American position statement, there is ongoing debate about the best treatment for anal fissure. This review is aimed at identifying the best treatment option drawing on evidence-based medicine and on the expert advice of 6 colorectal surgeons with extensive experience in this field in order to produce an Italian position statement for anal fissures. While there is little chance of a cure with conservative behavioral therapy, medical treatment with calcium channel blockers, diltiazem and nifepidine or glyceryl trinitrate, had a considerable success rate ranging from 50 to 90%. Use of 0.4% glyceryl trinitrate in standardized fashion seems to have the best results despite a higher percentage of headache, while the use of botulinum toxin had inconsistent results. Nonresponding patients should undergo lateral internal sphincterotomy. The risk of incontinence after this procedure seems to have been overemphasized in the past. Only a carefully selected group of patients, without anal hypertonia, could benefit from anoplasty
    corecore