1,357 research outputs found

    Optical study of the anisotropic erbium spin flip-flop dynamics

    Full text link
    We investigate the erbium flip-flop dynamics as a limiting factor of the electron spin lifetime and more generally as an indirect source of decoherence in rare-earth doped insulators. Despite the random isotropic arrangement of dopants in the host crystal, the dipolar interaction strongly depends on the magnetic field orientation following the strong anisotropy of the gg-factor. In Er3+^{3+}:Y2_2SiO5_5, we observe by transient optical spectroscopy a three orders of magnitude variation of the erbium flip-flop rate (10ppm dopant concentration). The measurements in two different samples, with 10ppm and 50ppm concentrations, are well-supported by our analytic modeling of the dipolar coupling between identical spins with an anisotropic gg-tensor. The model can be applied to other rare-earth doped materials. We extrapolate the calculation to Er3+^{3+}:CaWO4_4, Er3+^{3+}:LiNbO3_3 and Nd3+^{3+}:Y2_2SiO5_5 at different concentrations

    Superhyperfine induced photon-echo collapse of erbium in Y2_2SiO5_5

    Full text link
    We investigate the decoherence of Er3+^{3+} in Y2_2SiO5_5 at low magnetic fields using the photon-echo technique. We reproduce accurately a variety of the decay curves with a unique coherence time by considering the so-called superhyperfine modulation induced by a large number of neighbouring spins. There is no need to invoke any characteristic time of the spin fluctuations to reproduce very different decay curves. The number of involved nuclei increases when the magnetic is lowered. The experiment is compared with a model associating 100 surrounding ions with their exact positions in the crystal frame. We also derive an approximate spherical model (angular averaging) to interpret the main feature the observed decay curves close to zero-field

    Public perceptions of diabetes, healthy living and conversational agents in Singapore: a needs assessment

    Get PDF
    Background: The incidence of chronic diseases such as type 2 diabetes is on the rise in countries worldwide, including Singapore. Health professional-delivered healthy lifestyle interventions have been shown to prevent type 2 diabetes. Yet ongoing personalised guidance from health professionals is not feasible or affordable at the population level. Novel digital interventions delivered using mobile technology such as conversational agents are a potential alternative for delivery of healthy lifestyle change behavioural interventions to the public. Objective: We explored Singaporeans’ perceptions on and experience of healthy living, diabetes and mobile health interventions (apps and conversational agents). This survey was done to help inform the design and development of a conversational agent focusing on healthy lifestyle change. Methods: This qualitative study was conducted over Aug and Sept 2019. 20 participants were recruited from relevant healthy living Facebook pages and groups. Semi-structured interviews were conducted in person or over the telephone using an interview guide. Interviews were transcribed and analysed in parallel by two researchers using Burnard’s method, a structured approach for thematic content analysis. Results: The collected data was organised into four main themes: (1) use of conversational agents, (2) ubiquity of smartphone applications, (3) understanding of diabetes and (4) barriers and facilitators to a healthy living in Singapore. Most participants used health-related mobile applications as well as conversational agents unrelated to healthcare. They provided diverse suggestions for future conversational agent-delivered interventions. Participants also highlighted several knowledge gaps in relation to diabetes and healthy living. In terms of barriers to healthy living, frequent dining out, high stress levels, lack of work-life balance and dearth of free time to engage in physical activity were mentioned. In contrast, discipline, pre-planning and sticking to a routine were important for enabling a healthy lifestyle. Conclusions: Participants in our study commonly used mobile health interventions and provided important insights into their knowledge gaps and needs in relation to healthy lifestyle behaviour change. Future digital interventions like conversational agents focusing on healthy lifestyle and diabetes prevention should aim to address the barriers highlighted in our study and motivate individuals to adopt habits for healthy living

    UTP Semantics for BigrTiMo

    Get PDF

    Local Simulation Algorithms for Coulomb Interaction

    Full text link
    Long ranged electrostatic interactions are time consuming to calculate in molecular dynamics and Monte-Carlo simulations. We introduce an algorithmic framework for simulating charged particles which modifies the dynamics so as to allow equilibration using a local Hamiltonian. The method introduces an auxiliary field with constrained dynamics so that the equilibrium distribution is determined by the Coulomb interaction. We demonstrate the efficiency of the method by simulating a simple, charged lattice gas.Comment: Last figure changed to improve demonstration of numerical efficienc

    Theoretical Study of Cubic Structures Based on Fullerene Carbon Clusters: C28_{28}C and (C28)2_{28})_{2}

    Full text link
    We study a new hypothetical form of solid carbon \csc, with a unit cell which is composed of the \cs \ fullerene cluster and an additional single carbon atom arranged in the zincblende structure. Using {\it ab initio} calculations, we show that this new form of solid carbon has lower energy than hyperdiamond, the recently proposed form composed of \cs \ units in the diamond structure. To understand the bonding character of of these cluster-based solids, we analyze the electronic structure of \csc \ and of hyperdiamond and compare them to the electronic states of crystalline cubic diamond.Comment: 15 pages, latex, no figure

    Diffusion of hydrogen in crystalline silicon

    Full text link
    The coefficient of diffusion of hydrogen in crystalline silicon is calculated using tight-binding molecular dynamics. Our results are in good quantitative agreement with an earlier study by Panzarini and Colombo [Phys. Rev. Lett. 73, 1636 (1994)]. However, while our calculations indicate that long jumps dominate over single hops at high temperatures, no abrupt change in the diffusion coefficient can be observed with decreasing temperature. The (classical) Arrhenius diffusion parameters, as a consequence, should extrapolate to low temperatures.Comment: 4 pages, including 5 postscript figures; submitted to Phys. Rev. B Brief Repor

    Ab-initio Molecular Dynamics study of electronic and optical properties of silicon quantum wires: Orientational Effects

    Full text link
    We analyze the influence of spatial orientation on the optical response of hydrogenated silicon quantum wires. The results are relevant for the interpretation of the optical properties of light emitting porous silicon. We study (111)-oriented wires and compare the present results with those previously obtained within the same theoretical framework for (001)-oriented wires [F. Buda {\it et al.}, {\it Phys. Rev. Lett.} {\bf 69}, 1272, (1992)]. In analogy with the (001)-oriented wires and at variance with crystalline bulk silicon, we find that the (111)-oriented wires exhibit a direct gap at k=0{\bf k}=0 whose value is largely enhanced with respect to that found in bulk silicon because of quantum confinement effects. The imaginary part of the dielectric function, for the external field polarized in the direction of the axis of the wires, shows features that, while being qualitatively similar to those observed for the (001) wires, are not present in the bulk. The main conclusion which emerges from the present study is that, if wires a few nanometers large are present in the porous material, they are optically active independently of their specific orientation.Comment: 14 pages (plus 6 figures), Revte

    Event-based relaxation of continuous disordered systems

    Full text link
    A computational approach is presented to obtain energy-minimized structures in glassy materials. This approach, the activation-relaxation technique (ART), achieves its efficiency by focusing on significant changes in the microscopic structure (events). The application of ART is illustrated with two examples: the structure of amorphous silicon, and the structure of Ni80P20, a metallic glass.Comment: 4 pages, revtex, epsf.sty, 3 figure

    Generation of Intrinsic Vibrational Gap Modes in Three-Dimensional Ionic Crystals

    Full text link
    The existence of anharmonic localization of lattice vibrations in a perfect 3-D diatomic ionic crystal is established for the rigid-ion model by molecular dynamics simulations. For a realistic set of NaI potential parameters, an intrinsic localized gap mode vibrating in the [111] direction is observed for fcc and zinc blende lattices. An axial elastic distortion is an integral feature of this mode which forms more readily for the zinc blende than for the fcc structure. Molecular dynamics simulations verify that in each structure this localized mode may be stable for at least 200 cycles.Comment: 5 pages, 4 figures, RevTeX, using epsf.sty. To be published in Phys. Rev. B. Also available at http://www.msc.cornell.edu/~kiselev
    • …
    corecore