We analyze the influence of spatial orientation on the optical response of
hydrogenated silicon quantum wires. The results are relevant for the
interpretation of the optical properties of light emitting porous silicon. We
study (111)-oriented wires and compare the present results with those
previously obtained within the same theoretical framework for (001)-oriented
wires [F. Buda {\it et al.}, {\it Phys. Rev. Lett.} {\bf 69}, 1272, (1992)]. In
analogy with the (001)-oriented wires and at variance with crystalline bulk
silicon, we find that the (111)-oriented wires exhibit a direct gap at k=0 whose value is largely enhanced with respect to that found in bulk
silicon because of quantum confinement effects. The imaginary part of the
dielectric function, for the external field polarized in the direction of the
axis of the wires, shows features that, while being qualitatively similar to
those observed for the (001) wires, are not present in the bulk. The main
conclusion which emerges from the present study is that, if wires a few
nanometers large are present in the porous material, they are
optically active independently of their specific orientation.Comment: 14 pages (plus 6 figures), Revte