
UTP Semantics for BigrTiMo

Wanling Xie1, Huibiao Zhu1?, Shengchao Qin2

1 Shanghai Key Laboratory of Trustworthy Computing,
School of Computer Science and Software Engineering,

East China Normal University, Shanghai, China
2 School of Computing, University of Teesside,

Middlesbrough, Tees Valley, TS1 3BA, UK

Abstract. BigrTiMo [1], a process algebra that combines the rTiMo
calculus [2] and the Bigraph model [3], is capable of specifying a rich
variety of properties for structure-aware mobile systems. Compared with
rTiMo, our BigrTiMo calculus can specify not only time, mobility and
local communication, but also remote communication. In this paper, we
study the semantic foundation of this highly expressive modelling lan-
guage and propose a denotational semantic model for it based on Hoare
and He’s Unifying Theories of Programming (UTP) [4]. Compared to the
standard UTP model, in addition to the communication, the novelty of
the proposed UTP model in this paper covers time, location and global
shared variable. Moreover, we give an example to show the contribution
of BigrTiMo and illustrate how to use our semantic model and the trace-
merging definition proposed in our paper under this example. We also
demonstrate the proofs of some algebraic laws proposed in [1] based on
our denotational semantics.

1 Introduction

With the development of cloud computing, mobile applications play an impor-
tant role in modern distributed systems. Analyzing and verifying the increasing
complexity of mobile applications effectively is of great significance. Ciobanu
et al. [5] have first introduced a process algebra called TiMo (Timed Mobility)
model for mobile systems, where it is possible to add time constraints to the
basic actions (i.e., migration action and communication action) and the model
of time is based on local clocks. Aman et al. [2] have extended TiMo by intro-
ducing a real-time version named rTiMo in which a global clock is used. The
rTiMo processes can move between different locations of a mobile distributed
system and communicate locally with other processes.

The above calculi only can model the local communication (the two communi-
cation components should be at the same location), however, in real applications,
with the development of the internet, the two communication parties may not
only communicate locally, but also communicate remotely (the two components

? Corresponding Author. Email: hbzhu@sei.ecnu.edu.cn

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322324575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Xie et al.

can be at the different locations). In order to model the remote communications,
we have extended rTiMo into BigrTiMo [1] by introducing a Bigraph model [3].

Regarding a programming language, there are four well-known methods for
presenting semantics, including operational semantics, denotational semantic-
s, algebraic semantics and deductive semantics (originally called axiomatic se-
mantics) [6]. In [1], we have presented the operational semantics and algebraic
semantics for BigrTiMo. And in this paper, we will investigate the denotation-
al semantics which provides the mathematical meanings to programs. The ap-
proach of denotational semantics is under a purely mathematical basis, thus, it
is more abstract. Compared with operational semantics, denotational semantics
expresses what a program does. Our approach is based on Unifying Theories of
Programming (UTP) proposed by Hoare and He in 1998 [4]. Compared to the
standard UTP model [4], in addition to communication, the novelty of the UTP
model in this paper covers time, location and global shared variable. Moreover,
we give an example to show the contribution of BigrTiMo and illustrate how
to use our semantic model and the trace-merging definition proposed in our pa-
per under this example. We also demonstrate the proofs of some algebraic laws
proposed in [1] based on our denotational semantics.

The remainder of this paper is organized as follows. Section 2 gives an in-
troduction to the BigrTiMo calculus. In Section 3, we first present the semantic
model and healthiness conditions that a BigrTiMo program should satisfy. We
then explore the denotational semantics of BigrTiMo. In Section 4, we demon-
strate the proofs of some algebraic laws based on the denotational semantics.
Section 5 concludes the paper and discusses some possible future work.

2 BigrTiMo

In this section, we introduce BigrTiMo. In Section 2.1, we give a brief review of
the bigraph. In Section 2.2, we introduce the syntax of BigrTiMo and give an
example to show the contribution of our BigrTiMo calculus.

2.1 Review of Bigraph

A bigraph is a mathematical structure with two graphs, including a placing graph
and a linking graph [3]. The placing graph is a forest which is used to mod-
el nested locality of components and the linking graph is a hypergraph that
represents connectivity between components. Fig. 1 illustrates an example of a
bigraph. Fig. 2 presents the corresponding placing and linking graphs of Fig. 1.

The encompassing rectangle represents a region and the grey rectangles are
used to represent holes. Region and hole are the root and leaf node respectively
in the placing graph, and enable the composition of placing graphs, e.g., a hole
of a bigraph can be replaced by a region of another bigraph with the aid of
composition operator defined in [3]. Ports are represented as black dots on the
node, and are used to connect the edges or names, i.e., the node m1 has two
ports which connect to the edge e and the outer name y. The edge e and inner

UTP Semantics for BigrTiMo 3

Fig. 1. Bigraph Fig. 2. Placing and linking graphs

name x and outer name y are contained in the linking graph. We can also merge
inner names and outer names using the bigraph composition operator.

We below give the definition of a bigraph.

Definition 1. A bigraph is a 5-tuple (V,E, nupt, prnt, link) where,

– V is the set of node identifiers and E is the set of edge identifiers.

– nupt : V → N is a map that assigns their numbers of ports (i.e., a natural
number) to nodes.

– prnt : m]V → V]n is the parent map which is used to assign a parent (i.e.,
a node or a region) to the children (i.e., a hole or a node). m = {0, ..., |m|−1}
denotes the set of holes and n = {0, ..., |n| − 1} denotes the set of regions.
The symbol] stands for the disjoint union of sets.

– link : X] P → E] Y is the link map which assigns edges and outer names
to inner names and ports. X and Y denote the set of inner names and the
set of outer names respectively. P denotes the set of ports of the bigraph and
is formalized as P = {(l, i)|i ∈ {0, 1, ..., nupt(l) − 1}}, where l is a node in
the set V in a bigraph. For convenience, we introduce a map pts : V → P(N)
that takes a node and returns the set of ports of that node.

The bigraph stands for a specific snapshot of the world but there is no in-
formation on how it can evolve to another bigraph. Bigraph Reaction Rules
(BRRs) are defined in [3] to create dynamics of bigraphs. A BRR is the form of
R → R′ where R and R′ are bigraphs called redex and reactum, respectively.
Let r = R → R′ be a BRR and B a bigraph. In order to execute rule r in B
we should first decompose B into C ◦R ◦ d where C stands for the context and
d stands for the parameters inside the holes of R. We compose C with R′ and
with d to obtain the result B′, e.g., B = C ◦R ◦ d⇒ B′ = C ◦R′ ◦ d.

Consider a BRR MOVE(pc0, room2) that moves a pc0 node from its
current location to a room2 node. Fig. 3 describes the context C and parameters
d where the rule is applied. A bigraph B changed to B′ is illustrated at the top
of Fig. 3. At the bottom of this figure, we give the decomposition of each bigraph
in the context C, redex R, reactum R′ and parameters d.

4 Xie et al.

Fig. 3. Example of application of MOVE reaction rule

2.2 The Syntax of BigrTiMo

We have presented the BigrTiMo calculus in [1]. Compared with rTiMo, our Bi-
grTiMo can model not only the location of components but also the connectivity
of components. Thus, a BigrTiMo process not only can communicate locally with
other processes (like an rTiMo process), but also can communicate remotely with
other processes (if the locations of the two components are connected, i.e., they
share a communication link in the bigraph). In addition, a BigrTiMo process
can migrate from one location to another location (if the desired location is con-
tained in the bigraph and the current location of the process is connected to the
desired location), and perform the bigraph reaction rules to update the bigraph.

The syntax of BigrTiMo is given in Table 1. In BigrTiMo, actions are con-
trolled by using real-time constraints. Timeouts are specified by a superscript
4t. The communication channels are point-point, i.e. each connecting two pro-
cesses, and synchronous. A synchronous channel with buffer size 0 sends/recieves
messages synchronously and a communication a.v takes place when both actions
a!〈v〉 and a?(v) are enabled simultaneously. We first introduce the process parts:

1. nil denotes the process that terminates without taking any time.
2. a4t!〈v〉 then P else Q stands for an output process. When the message v is

sent via channel a successfully within t time units, the next process is P . If
the communication does not happen before the timeout t, the communication
attempt is aborted and the next process is Q.

3. a4t?(u) then P else Q indicates an input process. When the process receives
a message within t time units, the next process is P . If the input action does

UTP Semantics for BigrTiMo 5

not occur before the deadline t, it gives up and switches to the process Q.
The input process binds the variable u within P (but not within Q).

4. go4tl then P else Q denotes a migration process. If the migration action
happens successfully after delaying t time units, then the next process is
P located at location l. Otherwise, it switches to the alternative process Q
whose location does not change.

5. control4t(r) then P is an update process where r is a BRR which is per-
formed to update the state of the shared bigraph. After delaying t time units,
the update action takes place and the next process is P .

6. P || Q stands for parallel composition.
7. l[[P]] specifies a process P running at location l.

Table 1. BigrTiMo Syntax

Process P,Q ::= nil (termination)

| a4t!〈v〉 then P else Q (output)

| a4t?(u) then P else Q (input)

| go4tl then P else Q (move)

| control4t(r) then P (update)

| P || Q (parallel composition)

Located process L ::= l[[P]]

Network N ::= 0 | L | L || N
Configuration G ::= empty | 〈N,B〉 | 〈N,B〉 || G

We next introduce the network and configuration parts. 0 denotes an empty
network. A network can be a located process L or can be built via its component
L || N . empty denotes an empty configuration. A BigrTiMo configuration is a
tuple 〈N,B〉 denoted by G where N is a BigrTiMo network, B is a shared
bigraph and the locations in N are all contained in the set of the node identifiers
in the bigraph B. A configuration also can be built via component 〈N,B〉 || G.

The shared bigraph in BigrTiMo is globally accessible and it can be read
and written by different actions. In order to ensure the consistency of the shared
bigraph, it can only be updated in sequential programs (i.e., G1;G2 denotes the
behavior that runs G1 and G2 sequentially). Moreover, when programs execute
atomically, sequential programs from different configurations are not allowed to
execute simultaneously.

In order to support our algebraic expansion laws proposed in [1], we have
presented three types of guarded choice. And we can convert every BigrTiMo
program into the guarded choice form.

1. Instantaneous Guarded Choice.
The notation 〈[]{g1 → N1, ..., gn → Nn}, B〉 stands for an instantaneous
guarded choice, which executes its guard gi under the bigraph B initially

6 Xie et al.

and then performs the corresponding program 〈Ni, B〉 afterward. The guard
gi is an instantaneous guard which means that it takes place without any
time delay, and it can be a communication guard or an event guard. A com-
munication guard can be expressed as as a!〈v〉@l, a?(u)@l or a.[v/u]@(l, l′),
where a!〈v〉@l (or a?(u)@l) indicates that the output (or input) action hap-
pens at location l, and a.[v/u]@(l, l′) denotes that the communication occurs
where one communication end is from the location l and the other is from
the location l′, and the variable u is replaced by the message v. The even-
t guards are go(l′)@l and control(r)@l which represent that the migration
action and update action happen at the location l, respectively.

2. Delay Guarded Choice.
〈#t→ N,B〉 is a delay guarded choice and #t means delaying t time units.

3. Hybrid Guarded Choice.
The hybrid guarded choice has the following form where the notation ⊕
denotes the disjointness of timed behaviors.

〈[]i∈I{gi → Ni}, B〉
⊕ ∃t′ ∈ (0...t) • (〈#t′ → []i∈I{gi → N ′

i}, B〉)
⊕ 〈#t→ N ′, B〉

Example 1. Consider users with smartphones or personal computers communi-
cating with each other. A city may contain housing area, office area and subway
station and so on. Some areas may contain wireless hotspots which can be con-
nected to the internet. If a personal computer or a smartphone is contained in
a wireless hotspot it can connect to it. A user can walk from one location to
anther location if the two locations are connected.

Fig. 4. The example of bigraph b

Fig. 4 depicts a bigraph city named b. This figure shows a city with three
areas, namely home, office and subway. All areas are connected with a link
named road which models physical adjacency between the corresponding phys-
ical locations. A user can walk from home to subway (the two locations are
connected with a link road). Some areas contain nodes wlan0 and wlan1 (white

UTP Semantics for BigrTiMo 7

circles) which model the wireless hotspots, i.e., home contains wlan0 and office
contains wlan1. A smartphone modelled as a node sp (blue star) is contained
in wlan0. A personal computer modelled as a node pc (grey star) is contained
in wlan1. The nodes wlan0, wlan1, sp and pc all share a link named internet
modelling the connectivity of the corresponding entities to the internet.

The definition of the bigraph b is showed as below.
b = (V,E, nupt, prnt, link) where:
V = {home, office, subway,wlan0, wlan1, sp, pc}
E = {internet, road}
nupt(l) = 1 where l ∈ V

prnt(l) =

0, if l ∈ {home, office, subway};
home, if l = wlan0;
office, if l = wlan1;
wlan0, if l = sp;
wlan1, if l = pc.

link(p) =

{
internet, if p ∈ {(wlan0, 0), (wlan1, 0), (sp, 0), (pc, 0)};
road, if p ∈ {(home, 0), (office, 0), (subway, 0)}.

Consider two BigrTiMo processes appsf and appbs which are hosted at sp
and pc respectively. The role of each process is described as below.

– appsf is a process to give instructions to a staff to receive a message (this
message is used to inform the staff to go to a office) from a boss, then move
to subway, move to office, connect to the internet.

– appbs is a process to give instructions to a boss to send a message to a staff.

The BigrTiMo syntax of the whole mobile system is:

〈sp[[appsf]] || pc[[appbs]], b〉.
The BigrTiMo syntax of two processes is as below:

appsf = bs41?(u1) then (control43(r1) then control42(r2) then

control41(r3) then nil) else nil

appbs = bs41!〈work〉 then nil else nil
where r1 = MOVE(sp, subway), r2 = MOVE(sp,office),

r3 = CONNECT(sp,wlan1). �

3 Denotational Semantics of BigrTiMo

In this section, we present the denotational semantics for BigrTiMo. We use
beh(〈l[[P]], B〉) to describe the behavior of a process P running at location l in
the given bigraph B after it is activated. In Section 3.1, we give the semantic
model for BigrTiMo. In Section 3.2, we explore the behaviors of the basic com-
mands. In Section 3.3, we investigate the behavior of the parallel composition.

3.1 The Semantic Model

In this subsection, the denotational semantic model for BigrTiMo is investigated.
Similar to the semantic model for rTiMo [7], here, we also introduce a pair of

8 Xie et al.

variables st and st′ into our semantic model in order to denote the execution
state of a program. st represents the initial execution state of a program before
its activation and st′ stands for the final execution state of the program during
the current observation. A program may have two execution states:

1. completed state : A program has reached the completed state when it ter-
minates successfully. “st = completed ” indicates that the previous pro-
gram has terminated successfully and control passes to the current program.
“st′ = completed ” indicates that the current program has terminated suc-
cessfully and control passes to the next program.

2. wait state : A program may wait for communicating with another program
via a specific channel. “st = wait ” indicates that the predecessor of the
current program is in a waiting state. Thus, the current program cannot
be activated. “st′ = wait ” indicates that the current program itself is in a
waiting state. Thus, the next program cannot be activated.

We describe the behavior of a program in terms of a trace of snapshots which
record the sequence of the actions. In our semantic model, we introduce a variable
tr to denote the trace for the sequence of the actions. Inspired by the semantic
model for CSP# [8] which covers both communication and shared variables, a
snapshot in our semantic model can be expressed as (t, loc, σ, κ) where:

– t indicates the time when the action takes place.
– loc records the locations at which the action takes place. And the form of loc

is (l1, l2) or a single location l, where (l1, l2) means that the two components
are located at l1 and l2 respectively (i.e., one communication end is from l1,
and the other one is from l2). For convenience, we have (l, l) = l.

– σ denotes the pre-state of the shared bigraph and the action is observed
under this state.

– κ denotes the observed action, including inputs/outputs, synchronous com-
munications, migration and update. Thus, κ has the following forms:
1. for an input/output or a synchronous communication, the form of κ is
a.v, where a indicates the communication channel and v is the message
transmitted. We define Chan(κ) to obtain the communication channel
and Mess(κ) to obtain the message, i.e., if κ = a.v, then Chan(a.v) = a
and Mess(a.v) = v.

2. for a migration action, κ is a desired location.
3. for an update action, κ is a bigraph σ′ which is a post-state recording

the final state of the global shared bigraph after the observation. And it
is used to record the observation for the sequential programs.

We use the following projections to select the components of a snapshot:

π1((t, loc, σ, κ)) =df t π2((t, loc, σ, κ)) =df loc

π3((t, loc, σ, κ)) =df σ π4((t, loc, σ, κ)) =df κ

In addition to the communication and global shared variable, our calculus has
other interesting features, including time constrains and location information.
Thus, the observations of a BigrTiMo program can be described by a tuple:

(time, time′, st, st′, tr, tr′) where,

UTP Semantics for BigrTiMo 9

– time and time′ respectively denote the start point and the end point of the
time interval over which the observation is recorded. We use δ to represent
the length of the time interval.

δ =df (time′ − time)
In our discrete model, we regard the length of a time interval as a non-
negative real number, i.e., δ is considered as a non-negative real number.

– st represents the initial execution state of the program before its activation
and st′ stands for its final execution state during the current observation.

– tr represents the initial trace of a program over the interval which is passed
by its predecessor. tr′ stands for the final trace of a program over the interval.
tr′ − tr denotes the sequence of snapshots contributed by the program itself
during the interval.

We use the notations head(s) and tail(s) to denote the first snapshot of the
trace s and the result of removing the first snapshot in the trace s, respectively.

Example 2. Let us consider the configuration in Example 1 in Section 2 again,

where N1 = sp[[appsf]], N2 = pc[[appbs]], G = 〈N1 || N2, b〉.
Fig. 5 shows the execution trace over the respective BRRs, where b is the

initial bigraph and b3 is the final bigraph when the program terminates.

Fig. 5. Execution trace over the respective BRRs

Now we consider the trace of G. Assume that the activated time of G is at 0.
According to the syntax of BigrTiMo, we know that the communication action
occurs at time 0 (the two locations of the two components are connected by
a communication link internet). After delaying three time units, the rule r1 is
performed to update the bigraph b into b1. After that, the rule r2 is performed
to update b1 into b2 after delaying two time units. Lastly, after delaying one
time unit, the rule r3 is performed to update b2 into b3.

A trace of 〈N1, b〉 is given as below:

10 Xie et al.

〈(0, sp, b, bs.work), (3, sp, b, b1), (5, sp, b1, b2), (6, sp, b2, b3)〉.
A trace of 〈N2, b〉 is: 〈(0, pc, b, bs.work)〉.
Hence, the one trace of G is as follows:

〈(0, (sp, pc), b, bs.work), (3, sp, b, b1), (5, sp, b1, b2), (6, sp, b2, b3)〉. �

Every program will always satisfy some given healthiness conditions which
are defined as equations according to an idempotent function φ on predicates.
And for a predicate P denoting a healthy program, we have P = φ(P).

We next consider two healthiness conditions that BigrTiMo programs should
satisfy, and they are similar to the standard UTP theory [4]. In our semantic
model, the variable tr is used to record the execution trace of a program, so
it cannot be shortened. The variable time is used to record the progress of a
program and no program can ever make time go backwards, thus, it cannot be
smaller. The predicate P which describes a BigrTiMo program behavior must
therefore imply this fact. So it satisfies the healthiness condition R1.

R1 P = P ∧ Inv(tr, time), where

Inv(tr, time) =df tr � tr′ ∧ time ≤ time′, which states that tr is a prefix of
tr′, and time is less than or equal to time′.

Because of the requirement for synchronisation, a program may wait for
communicating with another program via a specific channel. We take the out-
put command 〈l[[a4t!〈v〉 then P1 else P2]], B〉 as an example: if process P1 or
P2 is asked to start in a waiting state of the output action a4t!〈v〉, then P1 or
P2 keeps itself unchanged. And it satisfies the following healthiness condition.

R2 P = Π / st = wait . P

where Π =df (st′ = st) ∧ (time′ = time) ∧ (tr′ = tr)

and P / b . Q =df (b ∧ P) ∨ (¬b ∧Q)

We denote all healthiness conditions satisfied by the BigrTiMo program us-
ing the following H function. And function H is idempotent and monotonic [4].

H(X) =df Π / st = wait . (X ∧ Inv(tr, time))

From the definition of H function, we know that H(X) satisfies the healthi-
ness conditions R1 and R2. The H function is used to define the denotational
semantics for the BigrTiMo model.

3.2 Denotational Semantics of Basic Commands

We first investigate the denotational semantics of 〈0, B〉. It is an empty config-
uration and its execution state, terminal time and trace all keep unchanged.

beh(〈0, B〉) =df H
(
st′ = st ∧ δ = 0 ∧ tr′ = tr

)
G1;G2 denotes the behavior that runs G1 and G2 sequentially. We now define

the sequence operator for our semantic model.

Definition 2. G1;G2 =df

∃s, t, r •G1[s/st′, t/time′, r/tr′] ∧ G2[s/st, t/time, r/tr].

UTP Semantics for BigrTiMo 11

The semantics of sequential composition is given as below:

beh(G1;G2) =df beh(G1); beh(G2)

As mentioned earlier, the guarded choice has three types: instantaneous
guarded choice, delay guarded choice and hybrid guarded choice. Now we give
the denotational semantics for these three types of guarded choice.

Instantaneous Guarded Choice. An instantaneous guard can be a com-
munication guard or an event guard. The three types of the communication
guard are a!〈v〉@l, a?(u)@l and a.[v/u]@(l, l′). The event guards are go(l′)@l
and control(r)@l. The semantics of the communication guards is similar to the
one in [7]. Due to space limitations, we only take the semantics of a!〈v〉@l as
an example. And the semantics of the event guards go(l′)@l and control(r)@l is
novel in this paper.

beh(〈[]i∈I{gi → Ni}, B〉) =df

∨
i∈I beh(〈gi → Ni, B〉), where

(1) if g = a!〈v〉@l, then

beh(〈a!〈v〉@l→ N,B〉) =df beh(〈a!〈v〉@l, B〉); beh(〈N,B〉)

where beh(〈a!〈v〉@l, B〉) =df H

(
st′ = completed ∧ δ = 0 ∧
tr′ = tr̂〈(time′, l, B, a.v)〉

)
(2) if g = go(l′)@l, then

beh(〈go(l′)@l→ N,B〉) =df beh(〈go(l′)@l, B〉); beh(〈N,B〉)

where beh(〈go(l′)@l, B〉) =df H

(
st′ = completed ∧ δ = 0 ∧
tr′ = tr̂〈(time′, l, B, l′)〉

)
(3) if g = control(r)@l, then

beh(〈control(r)@l→ N,B〉) =df beh(〈control(r)@l, B〉); beh(〈N,B′〉)

where beh(〈control(r)@l, B〉) =df H

(
st′ = completed ∧ δ = 0 ∧
tr′ = tr̂〈(time′, l, B,B′)〉

)
and r = R→ R′, B = C ◦R ◦ d, B′ = C ◦R′ ◦ d.

In the semantic of 〈control(r)@l→ N,B〉, the rule r is performed to update
the bigraph B into B′ without any time delay. Thus, time′ = time and a snap-
shot (time′, l, B,B′) contributed by the update action is attached to the end of
the program trace.

Delay Guarded Choice. It consists of only one time delay component.

beh(〈#t→ N,B〉) =df beh(〈#t, B〉); beh(〈N,B〉)

where beh(〈#t, B〉) =df H

(
((st′ = wait ∧ δ < t) ∨

(st′ = completed ∧ δ = t)) ∧ tr′ = tr

)
Hybrid Guarded Choice. The hybrid guarded choice has the following form:

G = 〈[]i∈I{gi → Ni}, B〉
⊕∃t′ ∈ (0...t) • (〈#t′ → []i∈I{gi → N ′

i}, B〉)
⊕〈#t→ N ′, B〉

and the semantics of G is given below. The three branches are disjoint.

12 Xie et al.

beh(G) =df

∨
i∈I beh(〈gi → Ni, B〉)∨

∃t′ ∈ (0...t) • (beh(〈#t′, B〉);
∨
i∈I beh(〈gi → N ′

i , B〉))∨
beh(〈#t, B〉); beh(〈N ′, B〉)

We then investigate the behavior of 〈l[[go4tl′ then P else Q]], B〉, it indicates

that if the desired location l′ is contained in the set of the node identifiers in the
bigraphB (denoted by VB), as well as the location l and the desired location l′ are
connected in the bigraph B, then the migration action can happen successfully
after delaying t time units. If the migration action takes place successfully, then
the subsequent behavior of the program is the behavior of the process P at the
location l′ in the bigraph B. On the other hand, if the migration action does not
take place, then the subsequent behavior of the program is the behavior of the
process Q at the location l in the bigraph B.

beh(〈l[[go4tl′ then P else Q]], B〉) =df

beh(〈#t, B〉);

(beh(〈go(l′)@l, B〉); beh(〈l′[[P]], B〉))
CgoflagB

beh(〈l[[Q]], B〉)

where goflag = l′ ∈ VB ∧ (∃p ∈ pts(l).∃p′ ∈ pts(l′).link(p) = link(p′))B .

In the above semantics definition, beh(〈#t, B〉) describes the behaviors of
delaying t time units. For t time units, its trace keeps unchanged. After delaying
t time units, if the boolean goflag is true, then the migration action takes place
and generates a snapshot attached to the end of the program trace.

The semantics of the output and input commands in our BigrTiMo is similar
to the one in rTiMo [7]. Due to space limitations, here, we only take the semantic
of the output command as an example.

beh(〈l[[a4t!〈v〉 then P else Q]], B〉) =df
beh(〈a!〈v〉@l, B〉); beh(l[[P]], B〉)∨

∃t′ ∈ (0...t) • (beh(〈#t′, B〉); beh(〈a!〈v〉@l, B〉); beh(l[[P]], B〉))∨
beh(〈#t, B〉); beh(l[[Q]], B〉)

Compared to the commands proposed in [7], the novelty operator in this

paper is the control command which is used to update the global shared bi-
graph. This command can only be executed in sequential programs, and when
it executes atomically, sequential programs from different configurations are not
allowed to execute simultaneously.

The control command 〈l[[control4t(r) then P]], B〉 performs the BRR r to
update the current bigraph B. After delaying t time units, the update action
takes place and the next process is P .

beh(〈l[[control4t(r) then P]], B〉) =df

beh(〈#t, B〉); beh(〈control(r)@l, B〉); beh(〈l[[P]], B′〉)
For t time units, the update action is in a waiting state and its trace is

UTP Semantics for BigrTiMo 13

unchanged. After delaying t time units, the update action takes place successfully
and a snapshot (time′, l, B,B′) contributed by the update action is attached to
the end of the program trace.

3.3 Denotational Semantics of Parallel Composition

The parallel composition 〈l[[P]] || l′[[Q]], B〉 executes the process P from l and
the process Q from l′ (l and l′ can be same or different) under the global shared
bigraph B in two ways: (1) synchronous channel output in one process takes place
simultaneously with the corresponding channel input in the other process; (2)
other actions of processes take place independently. The composition is described
by the following definition.

beh(〈l[[P]] || l′[[Q]], B〉) = beh(〈l[[P]], B〉) || beh(〈l′[[Q]], B〉) where,

beh(〈l[[P1]], B〉) || beh(〈l′[[P2]], B〉) =df

∃st1, st′1, st2, st′2, time1, time′1, time2, time′2, tr1, tr′1, tr2, tr′2 •
beh(〈l[[P1]], B〉)[st1, st′1, time1, time′1, tr1, tr′1/

st, st′, time, time′, tr, tr′] ∧
beh(〈l′[[P2]], B〉)[st2, st′2, time2, time′2, tr2, tr′2/

st, st′, time, time′, tr, tr′] ∧
Merge

The first two predicates in the above definition describe the two independent

behaviors of the configurations 〈l[[P1]], B〉 and 〈l′[[P2]], B〉. The predicate Merge
mainly does the merging of the contributed traces of the two behavioral branches,
as well as the merging of the execution states and terminal times.

We now give the definition of Merge.

Merge =df

(st′1 = completed ∧ st′2 = completed)⇒ st′ = completed ∧

(st′1 = wait ∨ st′2 = wait)⇒ st′ = wait ∧
time′ = max{time′1, time′2} ∧

∃s ∈ (tr′1 − tr1) || (tr′2 − tr2) • tr′ = tr̂s

The final execution state of the behavior of the parallel composition is de-

termined by the two parallel components together. And the terminal time of
the parallel composition is the maximum between the two terminal times of the
parallel components. The merging of the contributed traces of the two behaviors
can be defined as follows. The result of merging two empty traces (represented
as ε) is still empty, which is illustrated in case-1. If one of the two traces is
empty and the other is nonempty, the result follows the nonempty one shown in
case-2. And case-3 shows that function || is symmetric.

case-1 ε || ε =df {ε} case-2 s || ε =df {s} case-3 s || t =df t || s
If both traces are nonempty, then we can use the following cases to merge

the two traces. We below obtain the first snapshot in the two traces respectively.

t1 = π1(head(s)), l1 = π2(head(s)), σ1 = π3(head(s)), κ1 = π4(head(s))

t2 = π1(head(t)), l2 = π2(head(t)), σ2 = π3(head(t)), κ2 = π4(head(t))

14 Xie et al.

We first consider the case that t1 = t2 which means that the two actions κ1
and κ2 take place at the same time. The bigraph is a global shared variable, so
we have σ1 = σ2 = σ. In this case, neither of the two actions can be an update
action, since when the update action is executed, no other action can be executed
at this time. Thus, we only need to consider the following two cases: (1) the two
actions both are communication actions (denoted by case-4); (2) at least one of
the two actions is not a communication action: if κ1 is a communication action,
then κ2 should be a migration action, and if κ1 is a migration action, then κ2
can be a migration action or a communication action (denoted by case-5).

case-4 s || t =df

(

sĉ(tail(s) || tail(t))
/ Mess(κ1) = Mess(κ2) . ∅

)
/ Chan(κ1) = Chan(κ2) . T

 , if comflag=true;

T, otherwise.

where comflag = (l1 = l2) ∨ (∃p ∈ pts(l1) · ∃p′ ∈ pts(l2) · link(p) = link(p′))σ;

sc = 〈(t1, (l1, l2), σ, κ1)〉;
and T = 〈(t1, l1, σ, κ1)〉̂(tail(s) || t) ∪ 〈(t2, l2, σ, κ2)〉̂(s || tail(t)).

comflag = true means that the two communication components are at the
same location described by the first predicate l1 = l2, or the locations of the
two components are connected in the current bigraph σ described by the second
predicate. comflag = false means that the two components cannot communi-
cate with each other. If comflag = false, then we only need to attach head(s)
or head(t) to the end of the program trace (denoted by T). If comflag = true,
then we have the following descriptions.

– If Chan(κ1) equals to Chan(κ2) which means that the two channels are
same, then we consider the messages. If Mess(κ1) equals to Mess(κ2) which
means that the two messages are same, then a synchronization occurs and a
snapshot sc contributed by this communication is generated. On the other
hand, if the two messages are different, then the result of trace merging is
empty set ∅.

– If Chan(κ1) and Chan(κ2) are different, then a synchronization does not
happen and we only need to attach head(s) or head(t) to the end of the
program trace (denoted by T).

For the case that at least one of the two actions is not a communication
action, then a synchronization does not take place (denoted by T).

case-5 s || t =df T.

According to case-3, we know that function || is symmetric. Thus, we only
need to consider the case t1 < t2 which means that κ1 occurs before κ2 (denoted
by case-6). In this case, κ1 (or κ2) can be a communication action, a migration
action or an update action. And we only need to attach the first snapshot of s
to the end of the program trace.

case-6 s || t =df 〈(t1, l1, σ1, κ1)〉̂(tail(s) || t).

UTP Semantics for BigrTiMo 15

Example 3. Let us consider the configuration in Example 2 in Section 3.1 again,

where N1 = sp[[appsf]], N2 = pc[[appbs]], G = 〈N1 || N2, b〉.
As mentioned in Example 2, a trace of 〈N1, b〉 is given as below:

s = 〈(0, sp, b, bs.work), (3, sp, b, b1), (5, sp, b1, b2), (6, sp, b2, b3)〉.
A trace of 〈N2, b〉 is: t = 〈(0, pc, b, bs.work)〉.
According to the trace-merging definition case-4, we can obtain

s || t = 〈(0, (sp, pc), b, bs.work)〉̂(s′ || ε)
where s′ = 〈(3, sp, b, b1), (5, sp, b1, b2), (6, sp, b2, b3)〉.

According to case-2, we can obtain s′ || ε = {s′}.
Finally, we obtain one trace of G by merging s and t below:

〈(0, (sp, pc), b, bs.work), (3, sp, b, b1), (5, sp, b1, b2), (6, sp, b2, b3)〉. �

4 Algebraic Properties

Program properties can be expressed as algebraic laws and equations. In [1], we
have presented a set of algebraic laws for BigrTiMo. Our denotational semantics
in this paper can support the proofs of these laws. From these proofs, we can
see that our semantics definitions are very rigorous. Due to space limitations, we
only take some representative laws as examples.
(Output1) 〈l[[a4t!〈v〉 then P else Q]], B〉

= 〈a!〈v〉@l→ l[[P]], B〉
⊕ ∃t′ ∈ (0...t) • (〈#t′ → a!〈v〉@l→ l[[P]], B〉)
⊕ 〈#t→ l[[Q]], B〉, where t > 0.

From the law (Output1), we can see that the output command can be
converted into a hybrid guarded choice. And in this guarded choice, the first
branch indicates that the output action occurs at the activation time of the
output command. The second branch indicates that the output action takes place
after delaying t′ time units, where t′ ∈ (0...t). And the third branch indicates
that the output action does not happen before the timeout t.

Proof. By the semantics definitions for the output command and hybrid guarded
choice, we know that they have the same form. Thus, this law is correct. �

(Control1) 〈l[[control4t(r) then P]], B〉 = 〈#t→ control(r)@l→ l[[P]], B〉
where t > 0, r = R→ R′, B = C ◦R ◦ d and B′ = C ◦R′ ◦ d.

From the law (Control1), we can see that the control command can be
converted into a delay guard followed by an instantaneous event guard, which
indicates that after delaying t time units, the control action occurs successfully.

Proof. By the semantics definitions for the delay guarded choice and the instan-
taneous guarded choice, we have that beh(〈#t → control(r)@l → l[[P]], B〉)
equals to beh(〈#t, B〉); beh(〈control(r)@l, B〉); beh(〈l[[P]], B′〉). According to
the definition of the semantics for the control command, we see that they have
the same form, so this law is correct. �

16 Xie et al.

5 Conclusion

BigrTiMo is a process algebra for structure-aware mobile systems. In this pa-
per, we have studied the denotational semantics for BigrTiMo via the concept
of UTP. Compared to the standard UTP theory, in addition to communication,
the novelty in our UTP model covers time, location and global shared variable.
Moreover, we give an example to show the contribution of BigrTiMo and illus-
trate how to use our semantic model and the trace-merging definition proposed in
our paper under this example. We also demonstrate the proofs of some algebraic
laws based on the denotational semantics.

Recently, Hoare has proposed the challenging research topic for studying
semantic linking where the starting point is from the algebra semantics [9]. Hoare
and He have studied the derivation of operational semantics from the algebraic
semantics [4, 10]. For future work, we want to explore linking theory of the
semantics for BigrTiMo.

Acknowledgments

This work was partly supported by Shanghai Collaborative Innovation Center
of Trustworthy Software for Internet of Things (No. ZF1213).

References

1. Xie, W., Zhu, H., Xu, Q.: BigrTiMo-a process algebra for structure-aware mobile
systems. In: ICECCS 2017, Fukuoka, Japan, November 6-8. (2017) 50–59

2. Aman, B., Ciobanu, G.: Real-time migration properties of rTiMo verified in Up-
paal. In: SEFM 2013, Madrid, Spain, September 25-27. (2013) 31–45

3. Milner, R.: The Space and Motion of Communicating Agents. Cambridge Univer-
sity Press (2009)

4. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall Interna-
tional Series in Computer Science (1998)

5. Ciobanu, G., Koutny, M.: Timed mobility in process algebra and Petri nets. J.
Log. Algebr. Program. 80(7) (2011) 377–391

6. Hoare, T.: Unifying semantics for concurrent programming. In: Computation,
Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky.
(2013) 139–149

7. Xie, W., Xiang, S.: UTP semantics for rTiMo. In: UTP 2016, Reykjavik, Iceland,
June 4-5. (2016) 176–196

8. Shi, L., Zhao, Y., Liu, Y., Sun, J., Dong, J.S., Qin, S.: A UTP semantics for
communicating processes with shared variables. In: ICFEM 2013, Queenstown,
New Zealand, October 29 - November 1. (2013) 215–230

9. Hoare, T., van Staden, S.: In praise of algebra. Formal Asp. Comput. 24(4-6)
(2012) 423–431

10. He, J., Hoare, C.A.R.: From algebra to operational semantics. Inf. Process. Lett.
45(2) (1993) 75–80

