12 research outputs found

    Secular Evolution of Continents and the Earth System

    Get PDF
    Understanding of secular evolution of the Earth system is based largely on the rock and mineral archive preserved in the continental lithosphere. Based on the frequency and range of accessible data preserved in this record, we divide the secular evolution into seven phases: (a) “Proto-Earth” (ca. 4.57–4.45 Ga); (b) “Primordial Earth” (ca. 4.45–3.80 Ga); (c) “Primitive Earth” (ca. 3.8–3.2 Ga); (d) “Juvenile Earth” (ca. 3.2–2.5 Ga); (e) “Youthful Earth” (ca. 2.5–1.8 Ga); (f) “Middle Earth” (ca. 1.8–0.8 Ga); and (g) “Contemporary Earth” (since ca. 0.8 Ga). Integrating this record with knowledge of secular cooling of the mantle and lithospheric rheology constrains the changes in the tectonic modes that operated through Earth history. Initial accretion and the Moon forming impact during the Proto-Earth phase likely resulted in a magma ocean. The solidification of this magma ocean produced the Primordial Earth lithosphere, which preserves evidence for intra-lithospheric reworking of a rigid lid, but which also likely experienced partial recycling through mantle overturn and meteorite impacts. Evidence for craton formation and stabilization from ca. 3.8 to 2.5 Ga, during the Primitive and Juvenile Earth phases, likely reflects some degree of coupling between the convecting mantle and a lithosphere initially weak enough to favor an internally deformable, squishy-lid behavior, which led to a transition to more rigid, plate like, behavior by the end of the early Earth phases. The Youthful to Contemporary phases of Earth, all occurred within a plate tectonic framework with changes between phases linked to lithospheric behavior and the supercontinent cycle.Peter A. Cawood, Priyadarshi Chowdhury, Jacob A. Mulder, Chris J. Hawkesworth, Fabio A. Capitanio, Prasanna M. Gunawardana, and Oliver Nebe

    The opening of Sirte basin: Result of slab avalanching?

    No full text
    North Africa's Sirte basin opening is an enigmatic feature in the complex Meso-Cenozoic rearrangement of Mediterranean tectonics. New borehole data inversion constrains its deformation history showing a stretching event starting ~ 70 Ma and terminating in a further abrupt increase at ~ 50 Ma, rapidly fading afterwards. The timing of this event hardly reconciles with the Mesozoic major plates reorganization following the spreading of the Atlantic, and the Neogene Central Mediterranean tectonics, active at different times. Here, we propose that Sirte rifting could have been driven by the pull exerted by the Hellenic subduction. Reconstructions of Hellenic convergence and slab deep subduction, as constrained by plate kinematics and tomography, show that large slab mass accumulates in the upper mantle by late Cretaceous–Paleogene, eventually forcing further sinking in the lower mantle, coeval to the growing strain evolution recorded in Sirte. Furthermore, the ~ 20 m.y. phase of large pull here recorded, the consequent rapid growth over ~ 10 m.y. and following decay are compatible with the dynamics of slab avalanche as revealed by numerical models, showing that the Sirte basin opened in response to the large pull force developed during the mass flush, and transferred from deep slab to surface

    Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline

    No full text
    The building of the Andes results from the subduction of the oceanic Nazca plate underneath the South American continent1. However, how and why the Andes and their curvature, the Bolivian orocline, formed in the Cenozoic era (65.5 million years (Myr) ago to present), despite subduction continuing since the Mesozoic era(251.0–65.5 Myr ago), is still unknown. Three-dimensional numerical subduction models demonstrate that variations in slab thickness, arising from the Nazca plate’s age at the trench, produce a cordilleran morphology consistent with that observed. The age-dependent sinking of the slab in the mantle drives traction towards the trench at the base of the upper plate, causing it to thicken. Thus, subducting older Nazca plate below the Central Andes can explain the locally thickened crust and higher elevations. Here we demonstrate that resultant thickening of the South American plate modifies both shear force gradients and migration rates along the trench to produce a concave margin that matches the Bolivian orocline. Additionally, the varying forcing along the margin allows stress belts to form in the upper-plate interior, explaining the widening of the Central Andes and the different tectonic styles found on their margins, the Eastern and Western Cordilleras. The rise of the Central Andes and orocline formation are directly related to the local increase of Nazca plate age and an age distribution along the margin similar to that found today; the onset of these conditions only occurred in the Eocene epoch. This may explain the enigmatic delay of the Andean orogeny, that is, the formation of the modern Andes.Peer Reviewe

    EAU guidelines on renal cell carcinoma: the 2010 update.

    No full text
    Item does not contain fulltextCONTEXT AND OBJECTIVES: The European Association of Urology Guideline Group for renal cell carcinoma (RCC) has prepared these guidelines to help clinicians assess the current evidence-based management of RCC and to incorporate the present recommendations into daily clinical practice. EVIDENCE ACQUISITION: The recommendations provided in the current updated guidelines are based on a thorough review of available RCC guidelines and review articles combined with a systematic literature search using Medline and the Cochrane Central Register of Controlled Trials. EVIDENCE SYNTHESIS: A number of recent prospective randomised studies concerning RCC are now available with a high level of evidence, whereas earlier publications were based on retrospective analyses, including some larger multicentre validation studies, meta-analyses, and well-designed controlled studies. CONCLUSIONS: These guidelines contain information for the treatment of an individual patient according to a current standardised general approach. Updated recommendations concerning diagnosis, treatment, and follow-up can improve the clinical handling of patients with RCC.1 september 201
    corecore