23 research outputs found
Geomorphology of large braided rivers as driver of biodiversity : how it can shape patterns of aquatic invertebrate communities and populations structure
Les riviĂšres en tresses sont des grandes riviĂšres alluviales de piĂ©mont montagneux Ă forte dynamique spatio-temporelle et Ă gĂ©omorphologie particuliĂšre. Leur cours traverse alternativement de vastes plaines et des rĂ©trĂ©cissements de vallĂ©es ou canyons. Cette gĂ©omorphologie influence fortement les Ă©changes dâeau entre la riviĂšre avec sa nappe souterraine et sur lâĂ©paisseur sĂ©dimentaire. Les Ă©changes dâeau entre la riviĂšre et sa nappe se produisent Ă diffĂ©rentes Ă©chelles allant de la vallĂ©e jusquâĂ des bancs de graviers et peuvent crĂ©er des filtres biotiques et abiotiques qui influencent les communautĂ©s dâinvertĂ©brĂ©s. Les canyons crĂ©ent des zones de moindre Ă©paisseur sĂ©dimentaire voire dâabsence de sĂ©diments et peuvent reprĂ©senter de fortes barriĂšres Ă la dispersion pour des organismes infĂ©odĂ©s au milieu sĂ©dimentaire souterrain. Ce travail de thĂšse a cherchĂ© Ă Ă©valuer dans quelle mesure la gĂ©omorphologie pouvait donc structurer les communautĂ©s dâinvertĂ©brĂ©s de surface et souterraines et pouvait jouer sur la dispersion dâun organisme souterrain Proasellus walteri. Les diffĂ©rents rĂ©sultats obtenus ont permis de montrer que la gĂ©omorphologie structurait les communautĂ©s dâinvertĂ©brĂ©s en mettant en Ă©vidence une forte rĂ©ponse des communautĂ©s souterraines mais pas de surface et crĂ©ait des zones de forte biodiversitĂ© Ă lâaval des plaines. Les rĂ©sultats de cette Ă©tude ont Ă©galement permis de conclure sur un effet positif de la gĂ©omorphologie des riviĂšres en tresses sur la structuration gĂ©nĂ©tique de P. walteri et de mettre en Ă©vidence de grandes tailles de populations ainsi que de fortes capacitĂ©s de dispersion, permettant dâĂ©carter certaines idĂ©es reçues sur le milieu souterrainBraided rivers are large alluvial rivers found in piedmont mountainous areas. These rivers are very dynamic systems in space and time and exhibit particular geomorphology. The river flows alternatively into large alluvial plains or narrowing parts (also defined as canyons). This geomorphology impacts groundwater-surface water exchanges and sedimentary thickness. Groundwater-surface water exchanges occur at different scales, then interacting to shape biotic and abiotic filters for invertebrate communities. Canyons can reduce sedimentary continuity or interrupt it and may represent strong barriers to dispersal for sedimentary-dwelling organisms. This present work aimed at evaluating the effects of geomorphology in invertebrate community structure and as a potential barrier to dispersal in the subterranean organism Proasellus walteri. The different results obtained have shown that geomorphology structured invertebrate communities, highlighting a strong response in groundwater communities but not in surface communities and have shown that downstream parts of alluvial plains were hotspots of biodiversity. The results of this study also concluded on a positive effect of geomorphology in braided rivers on the genetic structure of P. walteri and underlined large effective population size and high dispersal ability, then removing some misconceptions about subterranean environmen
Effets de la gĂ©omorphologie des riviĂšres en tresses sur les communautĂ©s dâinvertĂ©brĂ©s aquatiques et sur la structuration gĂ©nĂ©tique des populations du crustacĂ© isopode souterrain Proasellus walteri
Braided rivers are large alluvial rivers found in piedmont mountainous areas. These rivers are very dynamic systems in space and time and exhibit particular geomorphology. The river flows alternatively into large alluvial plains or narrowing parts (also defined as canyons). This geomorphology impacts groundwater-surface water exchanges and sedimentary thickness. Groundwater-surface water exchanges occur at different scales, then interacting to shape biotic and abiotic filters for invertebrate communities. Canyons can reduce sedimentary continuity or interrupt it and may represent strong barriers to dispersal for sedimentary-dwelling organisms. This present work aimed at evaluating the effects of geomorphology in invertebrate community structure and as a potential barrier to dispersal in the subterranean organism Proasellus walteri. The different results obtained have shown that geomorphology structured invertebrate communities, highlighting a strong response in groundwater communities but not in surface communities and have shown that downstream parts of alluvial plains were hotspots of biodiversity. The results of this study also concluded on a positive effect of geomorphology in braided rivers on the genetic structure of P. walteri and underlined large effective population size and high dispersal ability, then removing some misconceptions about subterranean environmentLes riviĂšres en tresses sont des grandes riviĂšres alluviales de piĂ©mont montagneux Ă forte dynamique spatio-temporelle et Ă gĂ©omorphologie particuliĂšre. Leur cours traverse alternativement de vastes plaines et des rĂ©trĂ©cissements de vallĂ©es ou canyons. Cette gĂ©omorphologie influence fortement les Ă©changes dâeau entre la riviĂšre avec sa nappe souterraine et sur lâĂ©paisseur sĂ©dimentaire. Les Ă©changes dâeau entre la riviĂšre et sa nappe se produisent Ă diffĂ©rentes Ă©chelles allant de la vallĂ©e jusquâĂ des bancs de graviers et peuvent crĂ©er des filtres biotiques et abiotiques qui influencent les communautĂ©s dâinvertĂ©brĂ©s. Les canyons crĂ©ent des zones de moindre Ă©paisseur sĂ©dimentaire voire dâabsence de sĂ©diments et peuvent reprĂ©senter de fortes barriĂšres Ă la dispersion pour des organismes infĂ©odĂ©s au milieu sĂ©dimentaire souterrain. Ce travail de thĂšse a cherchĂ© Ă Ă©valuer dans quelle mesure la gĂ©omorphologie pouvait donc structurer les communautĂ©s dâinvertĂ©brĂ©s de surface et souterraines et pouvait jouer sur la dispersion dâun organisme souterrain Proasellus walteri. Les diffĂ©rents rĂ©sultats obtenus ont permis de montrer que la gĂ©omorphologie structurait les communautĂ©s dâinvertĂ©brĂ©s en mettant en Ă©vidence une forte rĂ©ponse des communautĂ©s souterraines mais pas de surface et crĂ©ait des zones de forte biodiversitĂ© Ă lâaval des plaines. Les rĂ©sultats de cette Ă©tude ont Ă©galement permis de conclure sur un effet positif de la gĂ©omorphologie des riviĂšres en tresses sur la structuration gĂ©nĂ©tique de P. walteri et de mettre en Ă©vidence de grandes tailles de populations ainsi que de fortes capacitĂ©s de dispersion, permettant dâĂ©carter certaines idĂ©es reçues sur le milieu souterrai
Evaluation de lâintĂ©gritĂ© des fonds marins dans le cadre de la DCSMM
International audienceLa directive cadre stratĂ©gie pour le milieu marin (DCSMM) vise, par une approche Ă©cosystĂ©mique, Ă atteindre ou restaurer un bon fonctionnement des Ă©cosystĂšmes marins. Sa mise en Ćuvre est organisĂ©e selon des cycles de 6 ans, permettant tout dâabord dâĂ©valuer lâĂ©tat environnemental du milieu marin, complĂ©tĂ© dâune Ă©valuation socio-Ă©conomique, puis de se fixer des objectifs environnementaux et enfin de prendre les mesures nĂ©cessaires Ă sa prĂ©servation. La mise en Ćuvre dâun programme de surveillance multi-thĂ©matiques permet de recueillir les donnĂ©es nĂ©cessaires aux Ă©valuations.LâĂ©tat de lâenvironnement marins est qualifiĂ© par onze descripteurs (thĂ©matiques) qui traitent des compartiments biologiques, physiques et des pressions exercĂ©es sur le milieu. Le descripteur 6, pilotĂ© par le BRGM au niveau national, concerne lâintĂ©gritĂ© des fonds marins et vise Ă garantir que la structure et les fonctions des Ă©cosystĂšmes sont prĂ©servĂ©es et que les Ă©cosystĂšmes benthiques, en particulier, ne sont pas perturbĂ©s.Le descripteur 6 Ă©value les modifications sĂ©dimentaires ou morphologiques des fonds marins induites par les activitĂ©s anthropiques, en diffĂ©renciant celles qui sont permanentes (pertes physiques) de celles qui sont temporaires ou rĂ©versibles (perturbations physiques). De plus, lâintensitĂ© des perturbations physiques doit ĂȘtre Ă©valuĂ©e afin de dĂ©terminer si elles produisent des effets nĂ©fastes sur les habitats benthiques. Les activitĂ©s anthropiques pouvant engendrer ces pressions physiques (pertes ou perturbations) sur le milieu sont nombreuses et variĂ©es : extraction de granulats, dragage et immersion de matĂ©riaux, rechargement de plage, ouvrages cĂŽtiers et au large, aquaculture, mouillages, pĂȘche professionnelle au fond, pĂȘche Ă pied de loisirs. La quantification des pressions physiques induites par ces activitĂ©s (et des effets sur les habitats benthiques) nĂ©cessite de nombreuses donnĂ©es qui ne sont pas disponible Ă lâĂ©chelle de toutes les façades mĂ©tropolitaines. NĂ©anmoins, pour la plupart des activitĂ©s, on dispose dâinformations sur leur localisation et leur Ă©tendue possible (en terme de zones autorisĂ©es pour certaines), voire dâinformation plus quantitatives telles que des volumes de sĂ©diments immergĂ©s annuellement ou des volumes de granulats autorisĂ©s Ă lâextraction. Ces informations rendent possible un premier niveau dâĂ©valuation nationale et une cartographie Ă faible rĂ©solution des fonds marins subissant des pressions physiques. Mais elles sont largement insuffisantes pour Ă©valuer de façon prĂ©cise et fiable les impacts morpho-sĂ©dimentaires des activitĂ©s traitĂ©es dans le cadre de la DCSMM.Pour certaines activitĂ©s, des Ă©tudes dâimpacts et des suivis environnementaux rĂ©glementaires sont demandĂ©s par les services de lâĂ©tat aux maitres dâouvrages afin dâanticiper les effets possibles des activitĂ©s, puis de suivre les impacts Ă©ventuels sur le terrain. Ces dossiers rĂ©glementaires reprĂ©sentant des sources dâinformations potentiellement trĂšs utiles et quantifiĂ©e pour les Ă©valuations de la DCSMM.Cette contribution vise Ă prĂ©senter les donnĂ©es disponibles Ă lâĂ©chelle nationale pour diffĂ©rentes activitĂ©s anthropiques et les Ă©valuations de pressions physiques quâelles engendrent sur les fonds marins. Les perspectives et possibilitĂ©s dâamĂ©liorations quâoffrent la collecte et lâanalyse des suivis environnementaux seront dĂ©taillĂ©es
Invertebrate distribution across nested geomorphic features in braided-river landscapes
International audienceRiver landscapes are increasingly viewed as a collection of nested geomorphic features, the hydrological effects of which juxtapose to create a mosaic of aquatic habitat conditions. We examined how the combined hydrological influences of stream reaches and gravel bars affect the composition of hyporheic invertebrate assemblages along the longitudinal and vertical dimensions of river landscapes. We worked in 12 braided-river valley segments of tributaries to the Rhone River, France. Valley segments were bounded downstream by geological knickpoints so that bedform-induced exchange flows beneath gravel bars and riffles were predictably embedded in exchange flows occurring at the valley-segment scale. In upstream reaches (UR) and downstream reaches (DR) of each valley segment, we collected invertebrates at the heads and tails of gravel bars in the hyporheic zone and at the upstream and downstream ends of riffles in surface channels adjacent to the bars. Patterns of vertical hydraulic gradient and specific conductance and the resulting spatial heterogeneity of temperature, dissolved O-2, and particulate organic C suggested that DR were points of flow convergence and water mixing. Specific conductance increased and temperature decreased more steeply along gravel bars in DR, indicating that water from long hyporheic flow paths or lateral aquifers was discharging at the tails of bars in DR. Density hotspots for insect larvae corresponded to hyporheic patches at the heads of bars in DR, which received the highest organic matter inputs from localized downwelling of surface water and were not affected by inputs of cold water from hyporheic flow paths or lateral aquifers. Density of epigean taxa at the tails of bars decreased more steeply with depth in DR than in UR, and density of hypogean taxa increased more steeply. Viewing local hyporheic assemblages as the outcome of a series of environmental filters operating over multiple exchange flows induced by nested geomorphic features provides a general framework that may foster our understanding of biodiversity patterns in river landscapes
Effect of host plant species and insecticides on the evolution of genetic diversity of a crop pest
For agricultural pests capable of attacking different plant species, crop distribution and selection pressure imposed by insecticide use are two key constraints imposed on their evolutionary trajectory. Here, we assessed the contribution of host-based genetic differentiation to the dynamics of resistance alleles to three insecticide modes of action in Myzus persicae. This major aphid pest is infamous for its ability to resist to multiple insecticides. Two distinct samplings were conducted: reference sampling on identified crops and continuous random sampling for 7 years using a suction trap. All aphids were genotyped at 14 microsatellite markers and four insecticide-resistant loci. We analyzed the genetic structure of these populations using an individual-centered approach. Four well-defined genetic clusters were found in the aerial samples, three of which could be linked to specific crops. We found a sharp differentiation between peach and herbaceous individuals. Within the individuals sampled on herbaceous hosts, two distinct genetic clusters were identified, one of which seems to be more strongly associated with tobacco. The fourth group was only found in the aerial samples and display strong genetic difference with other groups. The 4-loci resistance genotypes showed a strong association with the four genetic clusters, indicative of barriers to the spread of insecticide resistances. The 7-year continuous random sampling revealed a rapid turnover in aphid genotypes and associated insecticide resistance patterns. This study highlights the importance of considering landscape-scale population structure to identify the risk of emergence and spread of insecticide resistance for a particular crop
Host plants and insecticides shape the evolution of genetic and clonal diversity in a major aphid crop pest
International audienceUnderstanding the spatiotemporal dynamics of pesticide resistance at the landscape scale is essential to anticipate the evolution and spread of new resistance phenotypes. In crop mosaics, host plant specialization in pest populations is likely to dampen the spread of pesticide resistance between different crops even in mobile pests such as aphids. Here, we assessed the contribution of host-based genetic differentiation to the dynamics of resistance alleles in Myzus persicae, a major aphid pest which displays several insecticide resistance mechanisms. We obtained a representative sample of aphids from a crop mosaic through a suction trap for 7 years and from various crops as a reference collection. We genotyped these aphids at 14 microsatellite markers and four insecticide-resistant loci, analyzed the genetic structure, and assigned host-based genetic groups from field-collected aphids. Four well-defined genetic clusters were found in aerial samples, three of which with strong association with host-plants. The fourth group was exclusive to aerial samples and highly divergent from the others, suggesting mixture with a closely related taxon of M. persicae associated with unsampled plants. We found a sharp differentiation between individuals from peach and herbaceous plants. Individuals from herbaceous hosts were separated into two genetic clusters, one more strongly associated with tobacco. The 4-loci resistance genotypes showed a strong association with the four genetic clusters, indicative of barriers to the spread of resistance. However, we found a small number of clones with resistant alleles on multiple host-plant species, which may spread insecticide resistance between crops. The 7-year survey revealed a rapid turn-over of aphid genotypes as well as the emergence, frequency increase and persistence of clones with resistance to several families of insecticides. This study highlights the importance of considering landscape-scale population structure to identify the risk of emergence and spread of insecticide resistance for a particular crop
Geomorphic influence on intraspecific genetic differentiation and diversity along hyporheic corridors
International audience1. The hyporheic zone of rivers potentially acts as a dispersal corridor for ground-water organisms because it provides a spatially continuous interstitial habitat between isolated aquifers. Yet, the degree to which it can facilitate the move- ment of organisms has been hypothesized to vary in response to change in sedi- ment regime, which determines channel morphology.2. In this study, we used microsatellite markers to test for a relationship between the genetic structure and diversity of the minute interstitial isopod Proasellus walteri and channel morphology along three nearby hyporheic corridors differing widely in their sediment regime. We predicted that genetic diversity would decrease and genetic structuring would increase as sediment supply-limited channels would become prominent features in the river corridor. The reason is that such channels have fewer and less suitable sedimentary habitats for migra- tion because they lack large depositional bedforms such as gravel bars.3. Using genotypic data from seven microsatellite loci for a total of 713 individuals distributed among 25 demes, we found that demes had on average more alleles and were less differentiated in the river showing the most extensive alluvial depos- its and shortest length of sediment supply-limited channels. Population clusters were also of greater size, reaching up to 30 km in length. The longitudinal pattern of genetic differentiation in this sediment-rich river was best explained by hydro- logic distance and the longitudinal pattern of allelic richness was bell-shaped, as expected under a stepping-stone model with symmetrical migration.4. The length of sediment supply-channels was more important than hydrologic dis- tance in explaining the longitudinal distribution of genetic differentiation in the two other corridors facing a sediment shortage. Allelic richness decreased mono- tonically upstream in the most sediment-poor river. This correlates with the expan- sion further downstream of sediment supply-limited channels in this river, which is likely to decrease animal movement and hence gene flow among demes.5. Thisstudyprovidesthefirstevidencethatthedegreetowhichthehyporheiczone facilitates the movement of groundwater organisms varies greatly among rivers of contrasted geomorphology. Extending the application of riverscape genetics across a range of interstitial taxa and geomorphic settings holds much promise for assessing the contribution of the hyporheic zone to the dispersal of groundwater organisms
Map showing the location of sampling sites.
<p>Dark, light and very light grey patterns show the River catchments colonized by <i>Prosaelluswalteri</i>_T058, <i>P</i><i>. walteri</i>_T059, and <i>P</i><i>. walteri</i>_T060 (focal taxa), respectively. See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0076213#pone-0076213-t001" target="_blank">Table 1</a> for site codes.</p