9 research outputs found

    Molecular epidemiology of hepatitis E virus infections in Shanghai, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis E virus (HEV) causes acute or fulminant hepatitis in humans and is an important public health concern in many developing countries. China has a high incidence of HEV epidemics, with at least three genotypes (1, 3 and 4) and nine subtypes (1b, 1c, 3b, 4a, 4b, 4d, 4g, 4h and 4i) so far identified. Since genotype 3 and the newly identified subtype 4i have been exclusively limited geographically to Shanghai and its neighboring provinces, the epidemiology of HEV infections within the municipality, a major industrial and commercial center, deserves closer attention.</p> <p>Findings</p> <p>A total of 65 sequences, 60 located within the HEV SH-SW-zs1 genome [GenBank:<ext-link ext-link-id="EF570133" ext-link-type="gen">EF570133</ext-link>], together with five full-length swine and human HEV genomic sequences, all emanating from Shanghai, were retrieved from GenBank. Consistent with the primary role of genotype 4 in China overall, analysis of the sequences revealed this to have been the dominant genotype (58/65) in Shanghai. Six HEV subtypes (3b, 4a, 4b, 4d, 4h and 4i) were also represented. However, although subtype 4a is the dominant subtype throughout China, subtype 4i (29/65) was the most prevalent subtype among the Shanghai sequences, followed by subtypes 4d (10/65) and 4h (9/65). Subtypes 4h, 4i and 4d were found in both swine and humans, whereas 4b was found only in swine and subtype 4a only in humans.</p> <p>Conclusions</p> <p>Six different swine and human HEV subtypes have so far been documented in Shanghai. More molecular epidemiological investigations of HEV in swine, and particularly among the human population, should be undertaken.</p

    Study on surface integrity of DD5 nickel-based single crystal super-alloy in creep-feed grinding

    No full text
    In order to control the forming surface quality of signal crystal turbine blade tenon teeth in the creep feed grinding, the influence of the creep feed grinding parameters on the grinding surface integrity of DD5 nickel-based single crystal superalloy was investigated via orthogonal experiment. The results showed that the surface roughness along vertical grinding direction was ranged at 0.56-0.74 μm at the grinding wheel speed range of 15-30 m/s, feeding velocity range of 120-210 mm/min and grinding depth range of 0.1-0.7 mm, and the surface roughness in the grinding direction is about 1/5 of that in the vertical grinding direction. The surface topography and texture results showed that there were the obvious grooves and ridges on the grinding surface caused by the grain ploughing and scratching, the length and height of grooves and ridges on the grinding surface changed obviously under different processing parameters, and the three-dimensional topography of the grinding surface fluctuated obviously. The length of grooves and ridges along the grinding direction were sensitive to the speed of grinding wheel, waviness of grooves and ridges along the vertical grinding direction were sensitive to the grinding depth and workpiece feed rate. The different degrees of work hardening effect were presented at the grinding surface, the biggest work hardening effect achieved at 11.6%, and the maximum depth of work hardening effect was 110 μm. The distinct plastic deformation appeared at the grinding surface. The γ phase presented slip deformation along the grinding direction with various degrees, and the γ' phase presented skewing, twisting, broken and fracture, the maximum depth of plastic deformation was 2.92 μm. The work hardening effect of DD5 creep feed grinding mainly due to the plastic deformation degree at the grinding surface. The experimental conclusions provided theoretical guidance for DD5 signal crystal turbine blade tenon teeth
    corecore