24 research outputs found

    An audit of uncertainty in multi-scale cardiac electrophysiology models

    Get PDF
    Models of electrical activation and recovery in cardiac cells and tissue have become valuable research tools, and are beginning to be used in safety-critical applications including guidance for clinical procedures and for drug safety assessment. As a consequence, there is an urgent need for a more detailed and quantitative understanding of the ways that uncertainty and variability influence model predictions. In this paper, we review the sources of uncertainty in these models at different spatial scales, discuss how uncertainties are communicated across scales, and begin to assess their relative importance. We conclude by highlighting important challenges that continue to face the cardiac modelling community, identifying open questions, and making recommendations for future studies. This article is part of the theme issue ‘Uncertainty quantification in cardiac and cardiovascular modelling and simulation’

    Considering discrepancy when calibrating a mechanistic electrophysiology model

    Get PDF
    Uncertainty quantification (UQ) is a vital step in using mathematical models and simulations to take decisions. The field of cardiac simulation has begun to explore and adopt UQ methods to characterize uncertainty in model inputs and how that propagates through to outputs or predictions; examples of this can be seen in the papers of this issue. In this review and perspective piece, we draw attention to an important and under-addressed source of uncertainty in our predictions—that of uncertainty in the model structure or the equations themselves. The difference between imperfect models and reality is termed model discrepancy, and we are often uncertain as to the size and consequences of this discrepancy. Here, we provide two examples of the consequences of discrepancy when calibrating models at the ion channel and action potential scales. Furthermore, we attempt to account for this discrepancy when calibrating and validating an ion channel model using different methods, based on modelling the discrepancy using Gaussian processes and autoregressive-moving-average models, then highlight the advantages and shortcomings of each approach. Finally, suggestions and lines of enquiry for future work are provided. This article is part of the theme issue ‘Uncertainty quantification in cardiac and cardiovascular modelling and simulation’

    Model Reduction Opportunities in Detailed Simulations of Combustion Dynamics

    Get PDF
    Rocket and gas turbine combustion dynamics involves a confluence of diverse physics and interaction across a number of system components. Any comprehensive, self-consistent numerical model is burdened by a very large computational mesh, stiff unsteady processes which limit the permissible time step, and the need to perform tedious, repeated calculations for a broad parametric range. Predictive CFD models rely on very large scale simulations and advanced hardware. Reduced Basis Methods (RBM) have grown in usage during the past decade, as promising new techniques in making large simulations more accessible. These methods create models with far fewer unknown quantities than the original system, by generating “proper” fundamental solutions and their Galerkin projections, while guaranteeing accuracy and computational efficiency. RBMs seek to reproduce full CFD solutions, rather than solutions to a simplified or linearized set of equations. We present here some recent work in this area, focusing on approaches to model large scale combustor systems. The maturation of methods leading to LES-based turbulent combustion modeling is discussed, and model reduction goals and strategies are explored from the perspective of applicability in real life problems in both gas turbine, as well as rocket engines

    Labeling Preschoolers as Learning Disabled: A Cautionary Position

    Get PDF
    The purpose of this article is to explore the issues concerning the adaptation of school-based service delivery concepts for use in early childhood special education programs. The use of categorical labels for determining eligibility for preschool children is not required by law—and may be detrimental. The following concerns are discussed: (a) definitional issues in learning disabilities versus low achievement, (b) the dangers of labeling and low expectation sets, (c) repeated failure to demonstrate movement through a continuum of services (particularly to least restrictive environments), and (d) the efficacy of early intervention and school-based special services for those with mild or suspected developmental disabilities. Research is reviewed concerning definitional and assessment issues utilizing learning disabilities as a construct. Alternatives for describing the characteristics of young children who are significantly at risk or developmentally delayed are provided.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Performance-Portable Finite Element Assembly Using PyOP2 and FEniCS

    No full text

    Towards p-Adaptive Spectral/hp Element Methods for Modelling Industrial Flows

    Get PDF
    © 2017, Springer International Publishing AG. There is an increasing requirement from both academia and industry for high-fidelity flow simulations that are able to accurately capture complicated and transient flow dynamics in complex geometries. Coupled with the growing availability of high-performance, highly parallel computing resources, there is therefore a demand for scalable numerical methods and corresponding software frameworks which can deliver the next-generation of complex and detailed fluid simulations to scientists and engineers in an efficient way. In this article we discuss recent and upcoming advances in the use of the spectral/hp element method for addressing these modelling challenges. To use these methods efficiently for such applications, is critical that computational resolution is placed in the regions of the flow where it is needed most, which is often not known a priori. We propose the use of spatially and temporally varying polynomial order, coupled with appropriate error estimators, as key requirements in permitting these methods to achieve computationally efficient high-fidelity solutions to complex flow problems in the fluid dynamics community
    corecore