10 research outputs found

    Estudio de las modificaciones farmacológicas de los efectos electrofisiológicos producidos por el estiramiento local miocárdico a partir de técnicas dinámicas de cartografía eléctrica, en un modelo experimental de corazón aislado de conejo

    Full text link
    La electrofisiología cardíaca permite el estudio de la actividad eléctrica de regiones específicas del corazón y, por tanto, el análisis de las modificaciones de sus características en regiones sometidas a cambios tales como el estiramiento miocárdico agudo. El estiramiento miocárdico modifica las propiedades electrofisiológicas de los cardiomiocitos, originando arritmias cardíacas en diferentes situaciones patológicas. Los efectos mecánicos del estiramiento inducen cambios relacionados con el calcio, y son varios los mecanismos que han sido implicados, incluyendo un incremento de la entrada de Na+ y la activación secuencial de los intercambiadores Na+/H+ y Na+/Ca2+ (modo inverso), ligados a eventos autocrino/paracrinos. Esta Tesis Doctoral tiene como principal objetivo el estudio de la posible participación de estos mecanismos en las respuestas electrofisiológicas al estiramiento mediante el análisis de las modificaciones farmacológicas de dichas respuestas. Se han estudiado las modificaciones de las características de la activación miocárdica durante la fibrilación ventricular (FV) y de las propiedades electrofisiológicas miocárdicas inducidas por el estiramiento miocárdico agudo en 44 corazones de conejo aislados y perfundidos en un sistema Langendorff, utilizando electrodos múltiples epicárdicos y técnicas de cartografía eléctrica, bajo condiciones control (n=9) y durante la perfusión del antagonista de los receptores tipo 1 de angiotensina II losartán 1µM (n=8), del antagonista de los receptores tipo A de endotelina BQ-123 0,1µM (n=9), del inhibidor del intercambiador Na+/H+ 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) 1µM (n=9) y del inhibidor de la corriente tardía de Na+ ranolazina 5µM (n=9)Canto Serrano, ID. (2015). Estudio de las modificaciones farmacológicas de los efectos electrofisiológicos producidos por el estiramiento local miocárdico a partir de técnicas dinámicas de cartografía eléctrica, en un modelo experimental de corazón aislado de conejo [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48544TESI

    Effect of chronic exercise on myocardial electrophysiological heterogeneity and stability. Role of intrinsic cholinergic neurons: A study in the isolated rabbit heart

    Full text link
    [EN] A study has been made of the effect of chronic exercise on myocardial electrophysiological heterogeneity and stability, as well as of the role of cholinergic neurons in these changes. Determinations in hearts from untrained and trained rabbits on a treadmill were performed. The hearts were isolated and perfused. A pacing electrode and a recording multielectrode were located in the left ventricle. The parameters determined during induced VF, before and after atropine (1 mu M), were: fibrillatory cycle length (VV), ventricular functional refractory period (FRPVF), normalized energy (NE) of the fibrillatory signal and its coefficient of variation (CV), and electrical ventricular activation complexity, as an approach to myocardial heterogeneity and stability. The VV interval was longer in the trained group than in the control group both prior to atropine (78 +/- 10 vs. 68 +/- 10 ms) and after atropine (76 +/- 8 vs. 67 +/- 10 ms). Likewise, FRPVF was longer in the trained group than in the control group both prior to and after atropine (53 +/- 8 vs. 42 +/- 7 ms and 50 +/- 6 vs. 40 +/- 6 ms, respectively), and atropine did not modify FRPVF. The CV of FRPVF was lower in the trained group than in the control group prior to atropine (12.5 +/- 1.5% vs. 15.1 +/- 3.8%) and, decreased after atropine (15.1 +/- 3.8% vs. 12.2 +/- 2.4%) in the control group. The trained group showed higher NE values before (0.40 +/- 0.04 vs. 0.36 +/- 0.05) and after atropine (0.37 +/- 0.04 vs. 0.34 +/- 0.06; p = 0.08). Training decreased the CV of NE both before (23.3 +/- 2% vs. 25.2 +/- 4%; p = 0.08) and after parasympathetic blockade (22.6 +/- 1% vs. 26.1 +/- 5%). Cholinergic blockade did not modify these parameters within the control and trained groups. Activation complexity was lower in the trained than in the control animals before atropine (34 +/- 8 vs. 41 +/- 5), and increased after atropine in the control group (41 +/- 5 vs. 48 +/- 9, respectively). Thus, training decreases the intrinsic heterogeneity of the myocardium, increases electrophysiological stability, and prevents some modifications due to muscarinic block.This research was supported by the Spanish Ministry of Education and Science, (DEP2007-73234-C03-01 to AMA), http://www.mecd.gob.es/portada-mecd/; and the Generalitat Valenciana (PROMETEO 2010/093 to FJC, and FPI/2008/003 to MZ), http://www.gva.es/va/inicio/presentacion; jsessionid=ydprbDQZTsCTz85W1Such-Miquel, L.; Brines-Ferrando, L.; Alberola, A.; Zarzoso Muñoz, M.; Chorro Gasco, FJ.; Guerrero-Martínez, JF.; Parra-Giraldo, G.... (2018). Effect of chronic exercise on myocardial electrophysiological heterogeneity and stability. Role of intrinsic cholinergic neurons: A study in the isolated rabbit heart. PLoS ONE. 13(12). https://doi.org/10.1371/journal.pone.0209085S1312Billman, G. E. (2002). Aerobic exercise conditioning: a nonpharmacological antiarrhythmic intervention. Journal of Applied Physiology, 92(2), 446-454. doi:10.1152/japplphysiol.00874.2001Billman, G. E. (2006). A comprehensive review and analysis of 25 years of data from an in vivo canine model of sudden cardiac death: Implications for future anti-arrhythmic drug development. Pharmacology & Therapeutics, 111(3), 808-835. doi:10.1016/j.pharmthera.2006.01.002Dor-Haim, H., Berenfeld, O., Horowitz, M., Lotan, C., & Swissa, M. (2013). Reduced Ventricular Arrhythmogeneity and Increased Electrical Complexity in Normal Exercised Rats. PLoS ONE, 8(6), e66658. doi:10.1371/journal.pone.0066658Hamer, M., & Stamatakis, E. (2008). Physical Activity and Cardiovascular Disease: Directions for Future Research. The Open Sports Sciences Journal, 1(1), 1-2. doi:10.2174/1875399x00801010001Powers, S. K., Smuder, A. J., Kavazis, A. N., & Quindry, J. C. (2014). Mechanisms of Exercise-Induced Cardioprotection. Physiology, 29(1), 27-38. doi:10.1152/physiol.00030.2013Hull, S. S., Vanoli, E., Adamson, P. B., Verrier, R. L., Foreman, R. D., & Schwartz, P. J. (1994). Exercise training confers anticipatory protection from sudden death during acute myocardial ischemia. Circulation, 89(2), 548-552. doi:10.1161/01.cir.89.2.548Hajnal, Á., Nagy, O., Litvai, Á., Papp, J., Parratt, J. R., & Végh, Á. (2005). Nitric oxide involvement in the delayed antiarrhythmic effect of treadmill exercise in dogs. Life Sciences, 77(16), 1960-1971. doi:10.1016/j.lfs.2005.02.015Such, L., Alberola, A. M., Such-Miquel, L., López, L., Trapero, I., Pelechano, F., … Chorro, F. J. (2008). Effects of chronic exercise on myocardial refractoriness: a study on isolated rabbit heart. Acta Physiologica, 193(4), 331-339. doi:10.1111/j.1748-1716.2008.01851.xZarzoso, M., Such-Miquel, L., Parra, G., Brines-Ferrando, L., Such, L., Chorro, F. J., … Alberola, A. (2011). The training-induced changes on automatism, conduction and myocardial refractoriness are not mediated by parasympathetic postganglionic neurons activity. European Journal of Applied Physiology, 112(6), 2185-2193. doi:10.1007/s00421-011-2189-4Billman, G. E. (2009). Cardiac autonomic neural remodeling and susceptibility to sudden cardiac death: effect of endurance exercise training. American Journal of Physiology-Heart and Circulatory Physiology, 297(4), H1171-H1193. doi:10.1152/ajpheart.00534.2009HAN, J., & MOE, G. K. (1964). Nonuniform Recovery of Excitability in Ventricular Muscle. Circulation Research, 14(1), 44-60. doi:10.1161/01.res.14.1.44Beaumont, E., Salavatian, S., Southerland, E. M., Vinet, A., Jacquemet, V., Armour, J. A., & Ardell, J. L. (2013). Network interactions within the canine intrinsic cardiac nervous system: implications for reflex control of regional cardiac function. The Journal of Physiology, 591(18), 4515-4533. doi:10.1113/jphysiol.2013.259382Armour, J. A. (2008). Potential clinical relevance of the ‘little brain’ on the mammalian heart. Experimental Physiology, 93(2), 165-176. doi:10.1113/expphysiol.2007.041178Abramochkin, D. V., Nurullin, L. F., Borodinova, A. A., Tarasova, N. V., Sukhova, G. S., Nikolsky, E. E., & Rosenshtraukh, L. V. (2009). Non-quantal release of acetylcholine from parasympathetic nerve terminals in the right atrium of rats. Experimental Physiology, 95(2), 265-273. doi:10.1113/expphysiol.2009.050302CHORRO, F. J., CANOVES, J., GUERRERO, J., MAINAR, L., SANCHIS, J., SORIA, E., … LOPEZ-MERINO, V. (2000). Opposite Effects of Myocardial Stretch and Verapamil on the Complexity of the Ventricular Fibrillatory Pattern: An Experimental Study. Pacing and Clinical Electrophysiology, 23(11), 1594-1603. doi:10.1046/j.1460-9592.2000.01594.xSuch, L., Rodriguez, A., Alberola, A., Lopez, L., Ruiz, R., Artal, L., … Chorro, F. J. (2002). Intrinsic changes on automatism, conduction, and refractoriness by exercise in isolated rabbit heart. Journal of Applied Physiology, 92(1), 225-229. doi:10.1152/jappl.2002.92.1.225Duytschaever, M., Mast, F., Killian, M., Blaauw, Y., Wijffels, M., & Allessie, M. (2001). Methods for Determining the Refractory Period and Excitable Gap During Persistent Atrial Fibrillation in the Goat. Circulation, 104(8), 957-962. doi:10.1161/hc3401.093156Wijffels, M. C. E. F., Kirchhof, C. J. H. J., Dorland, R., & Allessie, M. A. (1995). Atrial Fibrillation Begets Atrial Fibrillation. Circulation, 92(7), 1954-1968. doi:10.1161/01.cir.92.7.1954Zaitsev, A. V., Berenfeld, O., Mironov, S. F., Jalife, J., & Pertsov, A. M. (2000). Distribution of Excitation Frequencies on the Epicardial and Endocardial Surfaces of Fibrillating Ventricular Wall of the Sheep Heart. Circulation Research, 86(4), 408-417. doi:10.1161/01.res.86.4.408Armour, J. A., Collier, K., Kember, G., & Ardell, J. L. (1998). Differential selectivity of cardiac neurons in separate intrathoracic autonomic ganglia. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 274(4), R939-R949. doi:10.1152/ajpregu.1998.274.4.r939Armour, J. A., & Hopkins, D. A. (1990). Activity of in vivo canine ventricular neurons. American Journal of Physiology-Heart and Circulatory Physiology, 258(2), H326-H336. doi:10.1152/ajpheart.1990.258.2.h326D’Souza, A., Bucchi, A., Johnsen, A. B., Logantha, S. J. R. J., Monfredi, O., Yanni, J., … Boyett, M. R. (2014). Exercise training reduces resting heart rate via downregulation of the funny channel HCN4. Nature Communications, 5(1). doi:10.1038/ncomms4775Sartiani, L., Romanelli, M., Mugelli, A., & Cerbai, E. (2015). Updates on HCN Channels in the Heart: Function, Dysfunction and Pharmacology. Current Drug Targets, 16(8), 868-876. doi:10.2174/1389450116666150531152047Herrmann, S., Layh, B., & Ludwig, A. (2011). Novel insights into the distribution of cardiac HCN channels: An expression study in the mouse heart. Journal of Molecular and Cellular Cardiology, 51(6), 997-1006. doi:10.1016/j.yjmcc.2011.09.005Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70-73. doi:10.1109/tau.1967.116190

    Effectiveness of an intervention for improving drug prescription in primary care patients with multimorbidity and polypharmacy:Study protocol of a cluster randomized clinical trial (Multi-PAP project)

    Get PDF
    This study was funded by the Fondo de Investigaciones Sanitarias ISCIII (Grant Numbers PI15/00276, PI15/00572, PI15/00996), REDISSEC (Project Numbers RD12/0001/0012, RD16/0001/0005), and the European Regional Development Fund ("A way to build Europe").Background: Multimorbidity is associated with negative effects both on people's health and on healthcare systems. A key problem linked to multimorbidity is polypharmacy, which in turn is associated with increased risk of partly preventable adverse effects, including mortality. The Ariadne principles describe a model of care based on a thorough assessment of diseases, treatments (and potential interactions), clinical status, context and preferences of patients with multimorbidity, with the aim of prioritizing and sharing realistic treatment goals that guide an individualized management. The aim of this study is to evaluate the effectiveness of a complex intervention that implements the Ariadne principles in a population of young-old patients with multimorbidity and polypharmacy. The intervention seeks to improve the appropriateness of prescribing in primary care (PC), as measured by the medication appropriateness index (MAI) score at 6 and 12months, as compared with usual care. Methods/Design: Design:pragmatic cluster randomized clinical trial. Unit of randomization: family physician (FP). Unit of analysis: patient. Scope: PC health centres in three autonomous communities: Aragon, Madrid, and Andalusia (Spain). Population: patients aged 65-74years with multimorbidity (≥3 chronic diseases) and polypharmacy (≥5 drugs prescribed in ≥3months). Sample size: n=400 (200 per study arm). Intervention: complex intervention based on the implementation of the Ariadne principles with two components: (1) FP training and (2) FP-patient interview. Outcomes: MAI score, health services use, quality of life (Euroqol 5D-5L), pharmacotherapy and adherence to treatment (Morisky-Green, Haynes-Sackett), and clinical and socio-demographic variables. Statistical analysis: primary outcome is the difference in MAI score between T0 and T1 and corresponding 95% confidence interval. Adjustment for confounding factors will be performed by multilevel analysis. All analyses will be carried out in accordance with the intention-to-treat principle. Discussion: It is essential to provide evidence concerning interventions on PC patients with polypharmacy and multimorbidity, conducted in the context of routine clinical practice, and involving young-old patients with significant potential for preventing negative health outcomes. Trial registration: Clinicaltrials.gov, NCT02866799Publisher PDFPeer reviewe

    Estudio del envejecimiento y de la diabetes a partir de la determinación del consumo de glucosa mediante el análisis de imagen molecular. Desarrollo de una herramienta de cuantificación cerebral en rata

    Full text link
    Se ha desarrollado una herramienta de cuantificación de imágenes moleculares adquiridas mediante PET, que permita el estudio del cerebro de rata. Se ha utilizado esta herramienta para el estudio de una población de ratas, determinando el consumo de glucosa en el cerebro de rata en el envejecimiento y la diabetes.Del Canto Serrano, I. (2010). Estudio del envejecimiento y de la diabetes a partir de la determinación del consumo de glucosa mediante el análisis de imagen molecular. Desarrollo de una herramienta de cuantificación cerebral en rata. http://hdl.handle.net/10251/11362Archivo delegad

    Multiclass texture-based PI-RADS classification in multiparametric MRI: performance evaluation of the DWI sequence

    Full text link
    Jaen-Lorites, JM.; Ruiz-España, S.; Piñeiro-Vidal, T.; Canto Serrano, ID.; Santabárbara, J.; Moratal, D. (2020). Multiclass texture-based PI-RADS classification in multiparametric MRI: performance evaluation of the DWI sequence. Springer Nature. 207-207. http://hdl.handle.net/10251/179211S20720

    Estudio experimental de los efectos de EIPA, losartán y BQ-123 sobre las modificaciones electrofisiológicas inducidas por el estiramiento miocárdico

    Full text link
    [ES] Introducción y objetivos Se han implicado diversos mecanismos en la respuesta mecánica al estiramiento miocárdico, que incluyen la activación del intercambiador Na+/H+ por acciones autocrinas y paracrinas. Se estudia la participación de estos mecanismos en las respuestas electrofisiológicas al estiramiento agudo miocárdico mediante el análisis de los cambios inducidos con fármacos. Métodos Se analizan las modificaciones de la fibrilación ventricular inducidas por el estiramiento agudo miocárdico en corazones de conejo aislados y perfundidos utilizando electrodos múltiples epicárdicos y técnicas cartográficas. Se estudian 4 series: control (n = 9); durante la perfusión del antagonista de los receptores de la angiotensina II, losartán (1 ¿M, n = 8); durante la perfusión del bloqueador del receptor de la endotelina A, BQ-123 (0,1 ¿M, n = 9), y durante la perfusión del inhibidor del intercambiador Na+/H+, EIPA (5-[N-ethyl-N-isopropyl]-amiloride) (1 ¿M, n = 9). Resultados EIPA atenuó el aumento de la frecuencia dominante de la fibrilación producido por el estiramiento (control = 40,4%; losartán = 36% [no significativo]; BQ-123 = 46% [no significativo], y EIPA = 22% [p < 0,001]). Durante el estiramiento, la complejidad de los mapas de activación fue menor en la serie con EIPA (p < 0,0001) y también en esta serie fue mayor la concentración espectral de la arritmia (mayor regularidad): control = 18 ± 3%; EIPA = 26 ± 9% (p < 0,02); losartán = 18 ± 5% (no significativo), y BQ-123 = 18 ± 4% (no significativo). Conclusiones El inhibidor del intercambiador Na+/H+ EIPA atenúa los efectos electrofisiológicos responsables de la aceleración y del aumento de la complejidad de la fibrilación ventricular producidos por el estiramiento agudo miocárdico. Por el contrario, el antagonista de los receptores de la angiotensina II, losartán, y el del receptor A de la endotelina, BQ-123, no modifican estos efectos.[EN] Introduction and objectives Mechanical response to myocardial stretch has been explained by various mechanisms, which include Na+/H+ exchanger activation by autocrine-paracrine system activity. Drug-induced changes were analyzed to investigate the role of these mechanisms in the electrophysiological responses to acute myocardial stretch. Methods Multiple epicardial electrodes and mapping techniques were used to analyze changes in ventricular fibrillation induced by acute myocardial stretch in isolated perfused rabbit hearts. Four series were studied: control (n = 9); during perfusion with the angiotensin receptor blocker losartan (1 ¿M, n = 8); during perfusion with the endothelin A receptor blocker BQ-123 (0.1 ¿M, n = 9), and during perfusion with the Na+/H+ exchanger inhibitor EIPA (5-[N-ethyl-N-isopropyl]-amiloride) (1 ¿M, n = 9). Results EIPA attenuated the increase in the dominant frequency of stretch-induced fibrillation (control = 40.4%; losartan = 36% [not significant]; BQ-123 = 46% [not significant]; and EIPA = 22% [P < .001]). During stretch, the activation maps were less complex (P < .0001) and the spectral concentration of the arrhythmia was greater (greater regularity) in the EIPA series: control = 18 (3%); EIPA = 26 (9%) (P < .02); losartan = 18 (5%) (not significant); and BQ-123 = 18 (4%) (not significant). Conclusions The Na+/H+ exchanger inhibitor EIPA attenuated the electrophysiological effects responsible for the acceleration and increased complexity of ventricular fibrillation induced by acute myocardial stretch. The angiotensin II receptor antagonist losartan and the endothelin A receptor blocker BQ-123 did not modify these effects.This study was funded by the Spanish Department of Science (Instituto de Salud Carlos III): projects FIS PS09/02417, FIS PI12/00407, and RETIC "RIC" RD12/0042/0048, and Generalitat Valenciana: project PROMETEO 2010/093Chorro, FJ.; Canto Serrano, ID.; Brines, L.; Such-Miquel, L.; Calvo Saiz, CJ.; Soler, C.; Zarzoso, M.... (2015). Experimental Study of the Effects of EIPA, Losartan, and BQ-123 on Electrophysiological Changes Induced by Myocardial Stretch. Revista Española de Cardiología. 68(12):1101-1110. https://doi.org/10.1016/j.rec.2014.12.023S11011110681

    Effects of S-Nitrosoglutathione on Electrophysiological Manifestations of Mechanoelectric Feedback

    Full text link
    [EN] Electromechanical coupling studies have described the intervention of nitric oxide and S-nitrosylation processes in Ca2+ release induced by stretch, with heterogeneous findings. On the other hand, ion channel function activated by stretch is influenced by nitric oxide, and concentration-dependent biphasic effects upon several cellular functions have been described. The present study uses isolated and perfused rabbit hearts to investigate the changes in mechanoelectric feedback produced by two different concentrations of the nitric oxide carrier S-nitrosoglutathione. Epicardial multielectrodes were used to record myocardial activation at baseline and during and after left ventricular free wall stretch using an intraventricular device. Three experimental series were studied: (a) control (n=10); (b) S-nitrosoglutathione 10 mu M (n=11); and (c) S-nitrosoglutathione 50 mu M (n=11). The changes in ventricular fibrillation (VF) pattern induced by stretch were analyzed and compared. S-nitrosoglutathione 10 mu M did not modify VF at baseline, but attenuated acceleration of the arrhythmia (15.6 +/- 1.7 vs. 21.3 +/- 3.8Hz; p<0.0001) and reduction of percentile 5 of the activation intervals (42 +/- 3 vs. 38 +/- 4ms; p<0.05) induced by stretch. In contrast, at baseline using the 50 mu M concentration, percentile 5 was shortened (38 +/- 6 vs. 52 +/- 10ms; p<0.005) and the complexity index increased (1.77 +/- 0.18 vs. 1.27 +/- 0.13; p<0.0001). The greatest complexity indices (1.84 +/- 0.17; p<0.05) were obtained during stretch in this series. S-nitrosoglutathione 10 mu M attenuates the effects of mechanoelectric feedback, while at a concentration of 50 mu M the drug alters the baseline VF pattern and accentuates the increase in complexity of the arrhythmia induced by myocardial stretch.Carlos III Health Institute/FEDER funds (Spanish Ministry of Economy and Competitiveness): Grants FIS PI12/00407, PI15/01408, PIE15/00013, and RETIC “RIC” RD12/0042/0048. Generalitat Valenciana: Grant PROMETEO FASE II 2014/037.Such-Miquel, L.; Canto Serrano, ID.; Zarzoso Muñoz, M.; Brines-Ferrando, L.; Soler, C.; Parra-Giraldo, G.; Guill Ibáñez, A.... (2018). Effects of S-Nitrosoglutathione on Electrophysiological Manifestations of Mechanoelectric Feedback. Cardiovascular Toxicology. 18(6):520-529. https://doi.org/10.1007/s12012-018-9463-1S520529186Tamargo, J., Caballero, R., Gómez, R., & Delpón, E. (2010). Cardiac electrophysiological effects of nitric oxide. Cardiovascular Research, 87, 593–600.Gonzalez, D. R., Treuer, A., Sun, Q. A., Stamler, J. S., & Hare, J. M. (2009). S-nitrosylation of cardiac ion channels. Journal of Cardiovascular Pharmacology, 54, 188–195.Treuer, A. V., & Gonzalez, D. R. (2015). Nitric oxide synthases, S-nitrosylation and cardiovascular health: From molecular mechanisms to therapeutic opportunities. Molecular Medicine Reports, 11, 1555–1565.Beigi, F., Gonzalez, D. R., Minhas, K. M., Sun, Q. A., Foster, M. W., Khan, S. A., Treuer, A. V., Dulce, R. A., Harrison, R. W., Saraiva, R. M., Premer, C., Schulman, I. H., Stamler, J. S., & Hare, J. M. (2012). Dynamic denitrosylation via S-nitrosoglutathione reductase regulates cardiovascular function. Proceedings of the National Academy of Sciences of the United States of America, 109, 4314–4319.Broniowska, K. A., Diers, A. R., & Hogg, N. (2013). S-nitrosoglutathione. Biochimica et Biophysica Acta, 1830, 3173–3181.Zaman, K., Palmer, L. A., Doctor, A., Hunt, J. F., & Gaston, B. (2004). Concentration-dependent effects of endogenous S-nitrosoglutathione on gene regulation by specificity proteins Sp3 and Sp1. The Biochemical Journal, 380, 67–74.Janse, M. J., Coronel, R., Wilms-Schopman, F. J. G., & de Groot, J. R. (2003). Mechanical effects on arrhythmogenesis: From pipette to patient. Progress in Biophysics and Molecular Biology, 82, 187–195.Quinn, T. A., & Kohl, P. (2016). Rabbit models of cardiac mechano-electric and mechano-mechanical coupling. Progress in Biophysics and Molecular Biology, 121, 110–122.Vila-Petroff, M., Kim, S. H., Pepe, S., Dessy, C., Marbán, E., Balligand, J. L., & Sollott, S. J. (2001). Endogenous nitric oxide mechanisms mediate the stretch-dependency of Ca2+ release in cardiomyocytes. Nature Cell Biology, 3, 867–873.Leite-Moreira, A. M., Neves, J. S., Almeida-Coelho, J., Neiva-Sousa, M., & Leite-Moreira, A. F. (2016). On the study of the role of NO-mediated pathways in the myocardial response to acute stretch. Nitric Oxide: Biology and Chemistry, 53, 1–3.Peyronnet, R., Nerbonne, J. M., & Kohl, P. (2016). Cardiac mechano-gated ion channels and arrhythmias. Circulation Research 118, 311–329.Fischmeister, R., Castro, L., Abi-Gerges, A., Rochais, F., & Vandecasteele, G. (2005). Species- and tissue-dependent effects of NO and cyclic GMP on cardiac ion channels. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 142, 136–143.Kazanski, V. E., Kamkin, A. G., Makarenko, E. Y., Lysenko, N. N., Sutiagin, P. V., Bo, T., & Kiseleva, I. S. (2010). Role of nitric oxide in activity control of mechanically gated ionic channels in cardiomyocytes: NO-donor study. Bulletin of Experimental Biology and Medicine, 150, 1–5.Dyachenko, V., Rueckschloss, U., & Isenberg, G. (2009). Modulation of cardiac mechanosensitive ion channels involves superoxide, nitric oxide and peroxynitrite. Cell Calcium, 45, 55–64.Chorro, F. J., Trapero, I., Guerrero, J., Such, L. M., Canoves, J., Mainar, L., Ferrero, A., Blasco, E., Sanchis, J., Millet, J., Tormos, A., Bodí, V., & Alberola, A. (2005). Modification of ventricular fibrillation activation patterns induced by local stretching. Journal of Cardiovascular Electrophysiology, 16, 1087–1096.Chorro, F. J., Trapero, I., Such-Miquel, L., Pelechano, F., Mainar, L., Cánoves, J., Tormos, A., Alberola, A., Hove-Madsen, L., Cinca, J., & Such, L. (2009). Pharmacological modifications of the stretch-induced effects on ventricular fibrillation in perfused rabbit-hearts. American Journal of Physiology Heart and Circulatory Physiology, 297, H1860–H1869.Brines, L., Such-Miquel, L., Gallego, D., Trapero, I., Del Canto, I., Zarzoso, M., Soler, C., Pelechano, F., Cánoves, J., Alberola, A., Such, L., & Chorro, F. J. (2012). Modifications of mechanoelectric feedback induced by 2,3-butanedione monoxime and blebbistatin in Langendorff-perfused rabbit hearts. Acta Physiologica, 206, 29–41.Chorro, F. J., del Canto, I., Brines, L., Such-Miquel, L., Calvo, C., Soler, C., Zarzoso, M., Trapero, I., Tormos, Á, & Such, L. (2015). Experimental study of the effects of EIPA, losartan and BQ-123 on electrophysiological changes induced by myocardial stretch. Revista Espanola de Cardiologia, 68, 1101–1110.Chorro, F. J., del Canto, I., Brines, L., Such-Miquel, L., Calvo, C., Soler, C., Parra, G., Zarzoso, M., Trapero, I., Tormos, A., Alberola, A., & Such, L. (2015). Ranolazine attenuates the electrophysiological effects of myocardial stretch in Langendorff-perfused rabbit hearts. Cardiovascular Drugs and Therapy, 29, 231–241.Kelly, R. A., Balligand, J. L., & Smith, T. W. (1996). Nitric oxide and cardiac function. Circulation Research, 79, 363–380.Kojda, G., & Kottenberg, K. (1999). Regulation of basal myocardial function by NO. Cardiovascular Research, 41, 514–523.Massion, P. B., Feron, O., Dessy, C., & Balligand, J. L. (2003). Nitric oxide and cardiac function: Ten years after, and continuing. Circulation Research, 93, 388–398.Shah, A. M., & MacCarthy, P. A. (2000). Paracrine and autocrine effects of nitric oxide on myocardial function. Pharmacology & Therapeutics, 86, 49–86.Zhang, Y. H., Dingle, L., Hall, R., & Casadei, B. (2009). The role of nitric oxide and reactive oxygen species in the positive inotropic response to mechanical stretch in the mammalian myocardium. Biochimica et Biophysica Acta, 1787, 811–817.Chorro, F. J., Ibañez-Catalá, X., Trapero, I., Such-Miquel, L., Pelechano, F., Cánoves, J., Mainar, L., Tormos, A., Cerdá, J. M., Alberola, A., & Such, L. (2013). Ventricular fibrillation conduction through an isthmus of preserved myocardium between radiofrequency lesions. Pacing and Clinical Electrophysiology, 36, 286–298.Gaston, B., Reilly, J., Drazen, J. M., Fackler, J., Ramdev, P., Arnelle, D., Mullins, M. E., Sugarbaker, D. J., Chee, C., Singel, D. J., Loscalzo, J., & Stamler, J. (1993). Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proceedings of the National Academy of Sciences of the United States of America, 90, 10957–10961.Radomski, M. W., Rees, D. D., Dutra, A., & Moncada, S. (1992). S-nitroso-glutathione inhibits platelet activation in vitro and in vivo. British Journal of Pharmacology, 107, 745–749.Zaman, K., McPherson, M., Vaughan, J., Hunt, J., Mendes, F., Gaston, B., & Palmer, L. A. (2001). S-nitrosoglutathione increases cystic fibrosis transmembrane regulator maturation. Biochemical and Biophysical Research Communications, 284, 65–70.Zaman, K., Carraro, S., Doherty, J., Henderson, E. M., Lendermon, E., Liu, L., Verghese, G., Zigler, M., Ross, M., Park, M., Palmer, L. A., Doctor, A., Stamler, J. S., & Gaston, B. (2006). S-nitrosylating agents: A novel class of compounds that increase cystic fibrosis transmembrane conductance regulator expression and maturation in epithelial cells. Molecular Pharmacology, 70, 1435–1442.Kaposzta, Z., Baskerville, P. A., Madge, D., Fraser, S., Martin, J. F., & Markus, H. S. (2001). L-arginine and S-nitrosoglutathione reduce embolization in humans. Circulation, 103, 2371–2375.Kaposzta, Z., Clifton, A., Molloy, J., Martin, J. F., & Markus, H. S. (2002). S-nitrosoglutathione reduces asymptomatic embolization after carotid angioplasty. Circulation, 106, 2057–3062.Everett, T. R., Wilkinson, I. B., Mahendru, A. A., McEniery, C. M., Garner, S., Goodall, A. H., & Lees, C. C. (2014). S-nitrosoglutathione improves haemodynamics in early-onset pre-eclampsia. British Journal of Clinical Pharmacology, 78, 660–669.Everett, T. R., Wilkinson, I. B., & Lees, C. C. (2017). Pre-eclampsia: The potential of GSNO reductase inhibitors. Current Hypertension Reports, 19, 1–7.Oppenheim, A., & Schafer, R. (1975). Digital signal processing. Englewood Cliffs: Prentice Hall.Such-Miquel, L., Chorro, F. J., Guerrero, J., Trapero, I., Brines, L., Zarzoso, M., Parra, G., Soler, C., del Canto, I., Alberola, A., & Such, L. (2013). Evaluation of the complexity of myocardial activation during ventricular fibrillation. An experimental study. Revista Espanola de Cardiologia, 66, 177–184.Erickson, J. R., Nichols, C. B., Uchinoumi, H., Stein, M., Bossuyt, J., & Bers, D. M. (2015). S-nitrosylation induces both autonomous activation and inhibition of calcium/calmodulin-dependent protein kinase IIδ. Journal of Biological Chemistry, 290, 25646–25656.Gómez, R., Caballero, R., Barana, A., Amorós, I., Calvo, E., López, J. A., Klein, H., Vaquero, M., Osuna, L., Atienza, F., Almendral, J., Pinto, A., Tamargo, J., & Delpón, E. (2009). Nitric oxide increases cardiac IK1 by nitrosylation of cysteine 76 of Kir2.1 channels. Circulation Research, 105, 383–392.Sun, J., Yamaguchi, N., Xu, L., Eu, J. P., Stamler, J. S., & Meissner, G. (2008). Regulation of the cardiac muscle ryanodine receptor by O2 tension and S-nitrosoglutathione. Biochemistry, 47, 13985–13990.Xu, L., Eu, J. P., Meissner, G., & Stamler, J. S. (1998). Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science, 279, 234–237.Zahradnikova, A., Minarovic, I., Venema, R. C., & Meszaros, L. G. (1997). Inactivation of the cardiac ryanodine receptor calcium release channel by nitric oxide. Cell Calcium, 22, 447–454.Kirstein, M., Rivet-Bastide, M., Hatem, S., Bénardeau, A., Mercadier, J. J., & Fischmeister, R. (1995). Nitric Oxide regulates the calcium current in isolated human atrial myocytes. Journal of Clinical Investigation, 95, 794–802.Rivet-Bastide, M., Vandecasteele, G., Hatem, S., Verde, I., Bénardeau, A., Mercadier, J. J., & Fischmeister, R. (1997). cGMP-stimulated cyclic nucleotide phosphodiesterase regulates the basal calcium current in human atrial myocytes. Journal of Clinical Investigation, 99, 2710–2718.Lim, G., Venetucci, L., Eisner, D. A., & Casadei, B. (2008). Does nitric oxide modulate cardiac ryanodine receptor function? Implications for excitation–contraction coupling. Cardiovascular Research, 77, 256–264.Ling, L., Hui, Y., Bing, G., Xin, H., Jing, W., & Jin-Cheng, L. (2015). Nitric oxide donor, NOC7, reveals dose dependently and cGMP pathway independently biphasic effects on contractile force of isolated rat heart after global ischemia. International Journal of Clinical and Experimental Pathology, 8, 3843–3849.Cingolani, H. E., Ennis, I. L., Aiello, E. A., & Pérez, N. G. (2011). Role of autocrine/paracrine mechanisms in response to myocardial strain. Pflugers Archiv European Journal of Physiology, 462, 29–38.Youm, J. B., Han, J., Kim, N., Zhang, Y. H., Kim, E., Joo, H., Leem, C. H., Kim, S. J., Cha, K. A., Earm, Y. E., & Leem, C. H. (2006). Role of stretch-activated channels on the stretch-induced changes of rat atrial myocytes. Progress in Biophysics and Molecular Biology, 90, 186–206.von Lewinski, D., Stumme, B., Maier, L. S., Luers, C., Bers, D. M., & Pieske, B. (2003). Stretch-dependent slow force response in isolated rabbit myocardium is Na+ dependent. Cardiovascular Research, 57, 1052–1061.Calaghan, S. C., Belus, A., & White, E. (2003). Do stretch-induced changes in intracellular calcium modify the electrical activity of cardiac muscle? Progress in Biophysics and Molecular Biology, 82, 91–95.Zhang, Y. H., Dingle, L., Hall, R., & Casadei, B. (2009). The role of nitric oxide and reactive oxygen species in the positive inotropic response to mechanical stretch in the mammalian myocardium. Biochimica Biophysica Acta, 1787, 811–817.Sag, C. M., Wagner, S., & Maier, L. S. (2013). Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes. Free Radical Biology and Medicine, 63, 338–349.Janvier, N. C., & Boyett, M. R. (1996). The role of Na-Ca exchange current in the cardiac action potential. Cardiovascular Research, 32, 69–84.Kovács, M., Kiss, A., Gönczi, M., Miskolczi, G., Seprényl, G., Kaszaki, J., Kohr, M. J., Murphy, E., & Vegh, A. (2015). Effect of sodium nitrite on ischaemia and reperfusion-induced arrhythmias in anaesthetized dogs: Is protein S-nitrosylation involved? PLoS ONE, 10(4), e0122243 (eCollection 2015). https://doi.org/10.1371/journal.pone.0122243

    Effects of the inhibition of late sodium current by GS967 on stretch-induced changes in cardiac electrophysiology

    Full text link
    [EN] PurposeMechanical stretch increases sodium and calcium entry into myocytes and activates the late sodium current. GS967, a triazolopyridine derivative, is a sodium channel blocker with preferential effects on the late sodium current. The present study evaluates whether GS967 inhibits or modulates the arrhythmogenic electrophysiological effects of myocardial stretch.MethodsAtrial and ventricular refractoriness and ventricular fibrillation modifications induced by acute stretch were studied in Langendorff-perfused rabbit hearts (n=28) using epicardial multiple electrodes and high-resolution mapping techniques under control conditions and during the perfusion of GS967 at different concentrations (0.03, 0.1, and 0.3M).ResultsOn comparing ventricular refractoriness, conduction velocity and wavelength obtained before stretch had no significant changes under each GS967 concentration while atrial refractoriness increased under GS967 0.3M. Under GS967, the stretch-induced changes were attenuated, and no significant differences were observed between before and during stretch. GS967 0.3M diminished the normal stretch-induced changes resulting in longer (less shortened) atrial refractoriness (13826ms vs 95 +/- 9ms; p<0.01), ventricular refractoriness (155 +/- 18ms vs 124 +/- 16 ms; p<0.01) and increments in spectral concentration (23 +/- 5% vs 17 +/- 2%; p<0.01), the fifth percentile of ventricular activation intervals (46 +/- 8ms vs 31 +/- 3ms; p<0.05), and wavelength of ventricular fibrillation (2.5 +/- 0.5cm vs 1.7 +/- 0.3cm; p<0.05) during stretch. The stretch-induced increments in dominant frequency during ventricular fibrillation (control=38%, 0.03M=33%, 0.1M=33%, 0.3M=14%; p<0.01) and the stretch-induced increments in arrhythmia complexity index (control=62%, 0.03M=41%, 0.1M=32%, 0.3M=16%; p<0.05) progressively decreased on increasing the GS967 concentration.Conclusions GS967 attenuates stretch-induced changes in cardiac electrophysiology.This work was supported by the Spanish Ministry of Economy and Competiveness (Carlos III Health Institute)/European Regional Development Fund (FEDER) (Grants FIS PI12/00407, PI15/01408, PIE15/00013, CB16/11/00486) and by the Generalitat Valenciana (Grant PROMETEO FASE II 2014/037).Canto Serrano, ID.; Santamaría, L.; Genovés, P.; Such-Miquel, L.; Arias-Mutis, ÓJ.; Zarzoso Muñoz, M.; Soler, C.... (2018). Effects of the inhibition of late sodium current by GS967 on stretch-induced changes in cardiac electrophysiology. Cardiovascular Drugs and Therapy. 32(5):413-425. https://doi.org/10.1007/s10557-018-6822-xS413425325Kondratev D, Christ A, Gallitelli MF. Inhibition of the Na+-H+ exchanger with cariporide abolishes stretch-induced calcium but not sodium accumulation in mouse ventricular myocytes. Cell Calcium. 2005;37:69–80.Cingolani HE, Perez NG, Cingolani OH, Ennis IL. The Anrep effect: 100 years later. Am J Physiol Heart Circ Physiol. 2013;304:H175–82.Von Lewinski D, Stumme B, Maier LS, Luers C, Bers DM, Pieske B. Stretch-dependent slow force response in isolated rabbit myocardium is Na+ dependent. Cardiovasc Res. 2003;57:1052–61.Quinn TA, Kohl P. Rabbit models of cardiac mechano-electric and mechano-electric and mechano-mechanical coupling. Prog Biophys Mol Biol. 2016;121:110–22.Kim D. Novel cation-selective mechanosensitive ion channel in the atrial cell membrane. Circ Res. 1993;72:225–31.Beyder A, Rae JL, Bernard C, Strege PR, Sachs F, Farrugia G. Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel. J Physiol. 2010;588:4969–85.Peyronnet R, Nerbonne JM, Kohl P. Cardiac mechano-gated ion channels and arrhythmias. Circ Res. 2016;118:311–29.Sag CM, Wagner S, Maier LS. Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes. Free Radic Biol Med. 2013;63:338–49.Prosser BL, Ward CW, Lederer WJ. X-ROS signaling is enhanced and graded by cyclic cardiomyocyte stretch. Cardiovasc Res. 2013;98:307–14.Patlak JB, Ortiz M. Slow currents through single sodium channels of the adult rat heart. J Gen Physiol. 1985;86:89–104.Maltsev VA, Undrovinas A. Late sodium current in failing heart: friend or foe? Prog Biophys Mol Biol. 2008;96:421–51.Wei XH, Yu SD, Ren L, Huang SH, Yang QM, Wang P, et al. Inhibition of late sodium current suppresses calcium-related ventricular arrhythmias by reducing the phosphorylation of CaMK-II and sodium channel expressions. Sci Rep. 2017;7:981.Yao L, Fan P, Jiang Z, Viatchenko-Karpinski S, Wu Y, Kornyeyev D, et al. Nav1.5-dependent persistent Na+ influx activates CaMKII in rat ventricular myocytes and N1325S mice. Am J Physiol Cell Physiol. 2011;301:C577–86.Ma J, Luo A, Wu L, Wan W, Zhang P, Ren Z, et al. Calmodulin kinase II and protein kinase C mediate the effect of increased intracellular calcium to augment late sodium current in rabbit ventricular myocytes. Am J Physiol Cell Physiol. 2012;302:C1141–51.Antzelevitch C, Burashnikov A, Sicouri S, Belardinelli L. Electrophysiological basis for the antiarrhythmic actions of ranolazine. Heart Rhythm. 2011;8:1281–90.Verrier RL, Kumar K, Nieminen T, Belardinelli L. Mechanisms of ranolazine’s dual protection against atrial and ventricular fibrillation. Europace. 2013;15:317–24.Chorro FJ, del Canto I, Brines L, Such-Miquel L, Calvo C, Soler C, et al. Ranolazine attenuates the electrophysiological effects of myocardial stretch in Langendorff perfused rabbit hearts. Cardiovasc Drugs Ther. 2015;29:231–41.Belardinelli L, Liu G, Smith-Maxwell C, Wang WQ, el-Bizri N, Hirakawa R, et al. A novel, potent, and selective inhibitor of cardiac late sodium current suppresses experimental arrhythmias. J Pharmacol Exp Ther. 2013;344:23–32.Sicouri S, Belardinelli L, Antzelevitch C. Antiarrhytmic effects of the highly selective late sodium channel current blocker GS-458967. Heart Rhyhm. 2013;10:1036–43.Koltun DO, Parkhill EQ, Elzein E, Kobayashi T, Notte GT, Kalla R, et al. Discovery of triazolopyridine GS-458967, a late sodium current inhibitor (late INai) of the cardiac NaV 1.5 channel with improved efficacy and potency relative to ranolazine. Bioorg Med Chem Lett. 2016;26:3202–6.Bonatti R, Silva AF, Batatinha JA, Sobrado LF, Machado AD, Varone BB, et al. Selective late sodium current blockade with GS-458967 markedly reduces ischemia-induced atrial and ventricular repolarization alternans and ECG heterogeneity. Heart Rhythm. 2014;11:1827–35.Alves Bento AS, Bacic D, Saran Carneiro J, Nearing BD, Fuller H, Justo FA, et al. Selective late INa inhibition by GS-458967 exerts parallel suppression of catecholamine-induced hemodynamically significant ventricular tachycardia and T-wave alternans in an intact porcine model. Heart Rhyhm. 2015;12:2508–14.Carneiro JS, Bento AS, Bacic D, Nearing BD, Rajamani S, Belardinelli L, et al. The selective cardiac late sodium current inhibitor GS-458967 suppresses autonomically triggered atrial fibrillation in an intact porcine model. J Cardiovasc Electrophysiol. 2015;26:1364–9.Chorro FJ, Trapero I, Guerrero J, Such LM, Canoves J, Mainar L, et al. Modification of ventricular fibrillation activation patterns induced by local stretching. J Cardiovasc Electrophysiol. 2005;16:1087–96.Chorro FJ, Trapero I, Such-Miquel L, Pelechano F, Mainar L, Cánoves J, et al. Pharmacological modifications of the stretch-induced effects of ventricular fibrillation in perfused rabbit-hearts. Am J Physiol Heart Circ Physiol. 2009;297:H1860–9.Such-Miquel L, Chorro FJ, Guerrero J, Trapero I, Brines L, Zarzoso M, et al. Evaluation of the complexity of myocardial activation during ventricular fibrillation. An experimental study. Rev Esp Cardiol. 2013;66:177–84.Burashnikov A, Di Diego JM, Robert J, Goodrow RJ, Belardinelli L, Antzelevitch C. Atria are more sensitive than ventricles to GS-458967-induced inhibition of late sodium current. J Cardiovasc Pharmacol Ther. 2015;20:501–8.Weiss JN, Chen PS, Qu Z, Karagueuzian HS, Garfinkel A. Ventricular fibrillation: how do we stop the waves from breaking? Circ Res. 2000;87:1103–7.Del Canto I, Such-Miquel L, Brines L, Soler C, Zarzoso M, Calvo C, et al. Effects of JTV-519 on stretch-induced manifestations of mechanoelectric feedback. Clin Exp Pharmacol Physiol. 2016;43:1062–70.Pezhouman A, Madahian S, Stepanyan H, Ghukasyan H, Qu Z, Belardinelli L, et al. Selective inhibition of late sodium current suppresses ventricular tachycardia and fibrillation in intact rat hearts. Heart Rhythm. 2014;11:492–501.Potet F, Vanoye CG, George AL. Use-dependent block of human cardiac sodium channels by GS967. Mol Pharmacol. 2016;90:52–60.Chorro FJ, Canto ID, Brines L, Such-Miquel L, Calvo C, Soler C, et al. Experimental study of the effects of EIPA, losartan, and BQ-123 on electrophysiological changes induced by myocardial stretch. Rev Esp Cardiol. 2015;68:1101–10.Ravelli F, Allessie MA. Effects of atrial dilatation on refractory period and vulnerability to atrial fibrillation in the isolated Langendorff-perfused rabbit heart. Circulation. 1997;96:1686–95.Reiter MJ, Synhorst DP, Mann DE. Electrophysiological effects of acute ventricular dilatation in the isolated rabbit heart. Circ Res. 1988;62:554–62.Chorro FJ, Egea S, Mainar L, Cánoves J, Sanchis J, Llavador E, et al. Acute modifications in the wavelength of the atrial excitation process induced by stretching. An experimental study. Rev Esp Cardiol. 1998;51:874–83.Iribe G, Jin H, Kaihara K, Naruse K. Effects of axial stretch on sarcolemmal BKCa channels in post-hatch chick ventricular myocytes. Exp Physiol. 2010;95:699–711.Calaghan SC, Belus A, White E. Do stretch-induced changes in intracellular calcium modify the electrical activity of cardiac muscle? Progr Biophys Mol Biol. 2003;82:81–95.Zhao HC, Agula H, Zhang W, Wang F, Sokabe M, Li LM. Membrane stretch and cytoplasmic Ca2+ independently modulate stretch-activated BK channel activity. J. Biomechanics. 2010;43:3015–9.Isenberg G, Kazanski V, Kondratev D, Gallitelli MF, Kiseleva I, Kamkin A. Differential effects of stretch and compression on membrane currents and [Na+]c in ventricular myocytes. Progr Biophys. Mol Biol. 2003;82:43–56.Kelly D, Mackenzie L, Hunter P, Smaill B, Saint DA. Gene expression of stretch-activated channels and mechanoelectric feedback in the heart. Clin Exp Pharmacol Physiol. 2006;33:642–8.Decher N, Kiper AK, Rinné S. Stretch-activated potassium currents in the heart: focus on TREK-1 and arrhythmias. Progr Biophys Mol Biol. 2017;130:223–32.Carmeliet E. Action potential duration, rate of stimulation, and intracellular sodium. J Cariovasc Electrophysiol. 2006;17(Suppl. I):S2–7.Wu L, Ma J, Li H, Wang C, Grandi E, Zhang P, et al. Late sodium current contributes to the reverse rate-dependent effect of Ikr inhibition on ventricular repolarization. Circulation. 2011;123:1713–20.Despa S, Bers DM. Na+ transport in the normal and failing heart—remember the balance. J Mol Cell Cardiol. 2013;61:2–10.Burashnikov A. Late INa inhibition as an antiarrhythmic strategy. J Cardiovasc Pharmacol. 2017;70:159–67.Zygmunt AC, Nesterenko VV, Rajamani S, Hu D, Barajas-Martinez H, Belardinelli L, et al. Mechanisms of atrial-selective block of Na+ channels by ranolazine: I. Experimental analysis of the use-dependent block. Am J Physiol Heart Circ Physiol. 2011;301:H1606–14.Kornyeyev D, El-Bizri N, Hirakawa R, Nguyen S, Viatchenko-Karpinski S, Yao L, et al. Contribution of the late sodium current to intracellular sodium and calcium overload in rabbit ventricular myocytes treated by anemone toxin. Am J Physiol Heart Circ Physiol. 2016;310:H426–35.Janvier NC, Boyett MR. The role of Na-Ca exchange current in the cardiac action potential. Cardiovasc Res. 1996;32:69–84.Karagueuzian HS, Pezhouman A, Angelini M, Olcese R. Enhanced late Na and Ca currents as effective antiarrhythmic drug targets. Front Pharmacol. 2017;8Remme CA, Bezzina CR. Sodium channel (Dys) function and cardiac arrhythmias. Cardiovasc Ther. 2010;28:287–94.Scirica BM, Morrow DA, Hod H, Murphy SA, Belardinelli L, Hedgepeth CM, et al. Effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non ST-segment elevation acute coronary syndrome: results from the metabolic efficiency with ranolazine for less ischemia in non ST-elevation acute coronary syndrome thrombolysis in myocardial infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation. 2007;116:1647–52.Shenasa M, Assadi H, Heidary S, Ranolazine SH. Electrophysiologic effect, efficacy, and safety in patients with cardiac arrhythmias. Card Electrophysiol Clin. 2016;8:467–79.Yu S, Li G, Huang CLH, Lei M, Wu L. Late sodium current associated cardiac electrophysiological and mechanical dysfunction. Pflugers Arch - Eur J Physiol. 2018;470:461–9.Gong M, Zhang Z, Fragakis N, Korantzopoulos P, Letsas KP, Li G, et al. Role of ranolazine in the prevention and treatment of atrial fibrillation: a meta-analysis of randomized clinical trials. Heart Rhythm. 2017;14:3–11

    Long-term effect of a practice-based intervention (HAPPY AUDIT) aimed at reducing antibiotic prescribing in patients with respiratory tract infections

    No full text
    corecore