61 research outputs found

    Climate change impacts and mitigation in the developing world: An Integrated Assessment of the Agriculture and Forestry Sectors. Policy Research Working Paper No. WPS 7477

    Get PDF
    This paper conducts an integrated assessment of climate change impacts and climate mitigation on agricultural commodity markets and food availability in low- and middle-income countries. The analysis uses the partial equilibrium model GLOBIOM to generate scenarios to 2080. The findings show that climate change effects on the agricultural sector will increase progressively over the century. By 2030, the impact of climate change on food consumption is moderate but already twice as large in a world with high inequalities than in a more equal world. In the long run, impacts could be much stronger, with global average calorie losses of 6 percent by 2050 and 14 percent by 2080. A mitigation policy to stabilize climate below 2 degrees C uniformly applied to all regions as a carbon tax would also result in a 6 percent reduction in food availability by 2050 and 12 percent reduction by 2080 compared to the reference scenario. To avoid more severe impacts of climate change mitigation on development than climate change itself, revenue from carbon pricing policies will need to be redistributed appropriately. Overall, the projected effects of climate change and mitigation on agricultural markets raise important issues for food security in the long run, but remain more limited in the medium term horizon of 2030. Thus, there are opportunities for low- and middle- income countries to pursue immediate development needs and thus prepare for later periods when adaptation needs and mitigation efforts will become the greatest

    Adiabatic description of nonspherical quantum dot models

    Full text link
    Within the effective mass approximation an adiabatic description of spheroidal and dumbbell quantum dot models in the regime of strong dimensional quantization is presented using the expansion of the wave function in appropriate sets of single-parameter basis functions. The comparison is given and the peculiarities are considered for spectral and optical characteristics of the models with axially symmetric confining potentials depending on their geometric size making use of the total sets of exact and adiabatic quantum numbers in appropriate analytic approximations

    Exploring the usefulness of scenario archetypes in science-policy processes: experience across IPBES assessments

    Get PDF
    Scenario analyses have been used in multiple science-policy assessments to better understand complex plausible futures. Scenario archetype approaches are based on the fact that many future scenarios have similar underlying storylines, assumptions, and trends in drivers of change, which allows for grouping of scenarios into typologies, or archetypes, facilitating comparisons between a large range of studies. The use of scenario archetypes in environmental assessments foregrounds important policy questions and can be used to codesign interventions tackling future sustainability issues. Recently, scenario archetypes were used in four regional assessments and one ongoing global assessment within the Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services (IPBES). The aim of these assessments was to provide decision makers with policy-relevant knowledge about the state of biodiversity, ecosystems, and the contributions they provide to people. This paper reflects on the usefulness of the scenario archetype approach within science-policy processes, drawing on the experience from the IPBES assessments. Using a thematic analysis of (a) survey data collected from experts involved in the archetype analyses across IPBES assessments, (b) notes from IPBES workshops, and (c) regional assessment chapter texts, we synthesize the benefits, challenges, and frontiers of applying the scenario archetype approach in a science-policy process. Scenario archetypes were perceived to allow syntheses of large amounts of information for scientific, practice-, and policy-related purposes, streamline key messages from multiple scenario studies, and facilitate communication of them to end users. In terms of challenges, they were perceived as subjective in their interpretation, oversimplifying information, having a limited applicability across scales, and concealing contextual information and novel narratives. Finally, our results highlight what methodologies, applications, and frontiers in archetype-based research should be explored in the future. These advances can assist the design of future large-scale sustainability-related assessment processes, aiming to better support decisions and interventions for equitable and sustainable futures

    The Three-Dimensional Distribution of αA-Crystalline in Rat Lenses and Its Possible Relation to Transparency

    Get PDF
    Lens transparency depends on the accumulation of massive quantities (600–800 mg/ml) of twelve primary crystallines and two truncated crystallines in highly elongated “fiber” cells. Despite numerous studies, major unanswered questions are how this heterogeneous group of proteins becomes organized to bestow the lens with its unique optical properties and how it changes during cataract formation. Using novel methods based on conical tomography and labeling with antibody/gold conjugates, we have profiled the 3D-distribution of the αA-crystalline in rat lenses at ∌2 nm resolutions and three-dimensions. Analysis of tomograms calculated from lenses labeled with anti-αA-crystalline and gold particles (∌3 nm and ∌7 nm diameter) revealed geometric patterns shaped as lines, isosceles triangles and polyhedrons. A Gaussian distribution centered at ∌7.5 nm fitted the distances between the ∌3 nm diameter gold conjugates. A Gaussian distribution centered at ∌14 nm fitted the Euclidian distances between the smaller and the larger gold particles and another Gaussian at 21–24 nm the distances between the larger particles. Independent of their diameters, tethers of 14–17 nm in length connected files of gold particles to thin filaments or clusters to ∌15 nm diameter “beads.” We used the information gathered from tomograms of labeled lenses to determine the distribution of the αA-crystalline in unlabeled lenses. We found that αA-crystalline monomers spaced ∌7 nm or αA-crystalline dimers spaced ∌15 nm center-to-center apart decorated thin filaments of the lens cytoskeleton. It thus seems likely that lost or gain of long-range order determines the 3D-structure of the fiber cell and possible also cataract formation
    • 

    corecore