13 research outputs found

    The diagnosis and management of central hypothyroidism in 2018

    Get PDF
    Central hypothyrodism (CeH) is a hypothyroid state caused by an insufficient stimulation by thyrotropin (TSH) of an otherwise normal thyroid gland. Several advancements, including the recent publication of expert guidelines for CeH diagnosis and management, have been made in recent years thus increasing the clinical awareness on this condition. Here, we reviewed the recent advancements and give expert opinions on critical issues. Indeed, CeH can be the consequence of various disorders affecting either the pituitary gland or the hypothalamus. Recent data enlarged the list of candidate genes for heritable CeH and a genetic origin may be the underlying cause for CeH discovered in pediatric or even adult patients without apparent pituitary lesions. This raises the doubt that the frequency of CeH may be underestimated. CeH is most frequently diagnosed as a consequence of the biochemical assessments in patients with hypothalamic/pituitary lesions. In contrast with primary hypothyroidism, low FT4 with low/normal TSH levels are the biochemical hallmark of CeH, and adequate thyroid hormone replacement leads to the suppression of residual TSH secretion. Thus, CeH often represents a clinical challenge because physicians cannot rely on the use of the ‘reflex TSH strategy’ for screening or therapy monitoring. Nevertheless, in contrast with general assumption, the finding of normal TSH levels may indicate thyroxine under-replacement in CeH patients. The clinical management of CeH is further complicated by the combination with multiple pituitary deficiencies, as the introduction of sex steroids or GH replacements may uncover latent forms of CeH or increase the thyroxine requirements

    Genetic architecture of self-limited delayed puberty and congenital hypogonadotropic hypogonadism

    Get PDF
    Distinguishing between self limited delayed puberty (SLDP) and congenital hypogonadotropic hypogonadism (CHH) may be tricky as they share clinical and biochemical characteristics. and appear to lie within the same clinical spectrum. However, one is classically transient (SDLP) while the second is typically a lifetime condition (CHH). The natural history and long-term outcomes of these two conditions differ significantly and thus command distinctive approaches and management. Because the first presentation of SDLP and CHH is very similar (delayed puberty with low LH and FSH and low sex hormones), the scientific community is scrambling to identify diagnostic tests that can allow a correct differential diagnosis among these two conditions, without having to rely on the presence or absence of phenotypic red flags for CHH that clinicians anyway seem to find hard to process. Despite the heterogeneity of genetic defects so far reported in DP, genetic analysis through next-generation sequencing technology (NGS) had the potential to contribute to the differential diagnostic process between SLDP and CHH. In this review we will provide an up-to-date overview of the genetic architecture of these two conditions and debate the benefits and the bias of performing genetic analysis seeking to effectively differentiate between these two conditions

    The complications of male hypogonadism: is it just a matter of low testosterone?

    Get PDF
    The history of diagnosing hypogonadism and hypotestosteronemia shows us the many steps that were necessary to achieve our current knowledge and the ability to improve these patients’ well-being. Moreover, so far, criteria for diagnosing hypotestosteronemia varies according to the underlying condition, and according to the consensus or guideline adopted. Furthermore, besides the many signs and symptoms, there are several complications associated with low testosterone levels such as osteoporosis, metabolic alterations, as well as cardiovascular disorders. However, data are often conflicting regarding the severity, timing or even the real clinical relevance of these complications, although these studies often lack essential information such as gonadotropin levels or the underlying cause of hypogonadism. The present review focus on the complications of male hypogonadism according to the cause of testosterone deficiency, highlighting the lack of information found in many studies investigating its effects. We thereby stress the necessity to always perform a complete evaluation of the type of hypogonadism (including at least gonadotropins and secondary causes) when investigating the effects of low testosterone levels

    Psychological complications in patients with acromegaly: relationships with sex, arthropathy, and quality of life

    Get PDF
    Current treatment of acromegaly restores a normal life expectancy in most cases. So, the study of persistent complications affecting patients' quality of life (QoL) is of paramount importance, especially motor disability and depression. In a large cohort of acromegalic patients we aimed at establishing the prevalence of depression, to look for clinical and sociodemographic factors associated with it, and to investigate the respective roles (and interactions) of depression and arthropathy in influencing QoL

    Dataset Body weight variation is not an independent factor in the determination of functional hypothalamic amenorrhea in Anorexia Nervosa

    No full text
    Dataset of the paper Body weight variation is not an independent factor in the determination of functional hypothalamic amenorrhea in Anorexia Nervos

    The somatotropic-testicular axis: a crosstalk between GH/IGF-I and gonadal hormones during development, transition and adult age

    No full text
    Background: The hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-somatotropic (HPS) axes are strongly interconnected. Interactions between these axes are complex and poorly understood. These interactions are characterized by redundancies in reciprocal influences at each level of regulation and the combination of endocrine and paracrine effects that change during development. Objectives: To comprehensively review the crosstalk between the HPG and HPS axes and related pathological and clinical aspects during various life stages of male subjects MATERIALS AND METHODS: A thorough search of publications available in PubMed was performed using proper keywords. Results: Molecular studies confirmed the expressions of growth hormone (GH) and insulin-like growth factor-I (IGF-I) receptors on the HPG axis and reproductive organs, indicating a possible interaction between HPS and HPG axes at various levels. Insulin growth factors participate in sexual differentiation during fetal development, indicating that normal HPS axis activity is required for proper testicular development. IGF-I contributes to correct testicular position during minipuberty, determines linear growth during childhood, and promotes puberty onset and pace through gonadotropin-releasing hormone activation. IGF-I levels are high during transition age, even when linear growth is almost complete, suggesting its role in reproductive tract maturation. Patients with GH deficiency (GHD) and insensitivity (GHI) exhibit delayed puberty and impaired genital development; replacement therapy in such patients induces proper pubertal development. In adults, few studies have suggested that lower IGF-I levels are associated with impaired sperm parameters. Discussion and conclusion: The role of GH-IGF-I in testicular development remains largely unexplored. However, it is important to evaluate gonadic development in children with GHD. Additionally, HPS axis function should be evaluated in children with urogenital malformation or gonadal development alterations. Correct diagnosis and prompt therapeutic intervention are needed for healthy puberty, attainment of complete gonadal development during transition age, and fertility potential in adulthood

    Table_1_Genetic and phenotypic differences between sexes in congenital hypogonadotropic hypogonadism (CHH): Large cohort analysis from a single tertiary centre.docx

    No full text
    BackgroundCongenital hypogonadotropic hypogonadism (CHH) is a condition with a strong genetic background, caused by a deficient production, secretion, or action of gonadotropin-releasing hormone (GnRH). Published data on CHH cohorts indicate a male predominance, although this is not supported by our current understandings.AimsIn order to unravel the possible causes or contributors to such epidemiological sex difference, the aim of our study is to investigate differences in genetic background and clinical presentation between males and females in a large cohort of CHH patients.Materials and methodsWe enrolled 338 CHH patients with absent or arrested pubertal development, referred to our Center from 01/2016. Data collection included clinical assessment at diagnosis and genetic analysis performed by next generation sequencing (NGS), employing a custom panel of 28 candidate genes.ResultsAmong 338 patients 94 were female (F) and 244 male (M), with a ratio of 1:2.6. We found that 36.09% (122/338) of patients harbored potentially pathogenic rare genetic variants (RVs) with no significant differences between sexes; on the other hand, a significantly higher frequency of oligogenicity was observed in females (F 9,57% 9/94 vs M 3,69% 9/244, P = 0.034). The prevalence of non-reproductive phenotypic features was significantly higher (P = 0.01) in males (53/228, 23.2%) than in females (10/93, 10.8%): in particular, kidney abnormalities affected only male patients and midline defects had a significantly higher prevalence in males (P = 0.010). Finally, BMI SDS was -0.04 ± 1.09 in females and 0.69 ± 1.51 in males, with a statistically significant difference between groups (P = ConclusionOur data confirm the male predominance in CHH and identify some differences with regard to the clinical presentation between males and females that could indicate a variable expression of genetic rare variants and a dimorphic modulation of phenotype according to metabolic/behavioral factors, which will need to be substantiated and investigated by further studies.</p

    Vitamin D and COVID-19 severity and related mortality: a prospective study in Italy

    No full text
    Abstract Background Vitamin D deficiency has been suggested to favor a poorer outcome of Coronavirus disease-19 (COVID-19). We aimed to assess if 25-hydroxyvitamin-D (25OHD) levels are associated with interleukin 6 (IL-6) levels and with disease severity and mortality in COVID-19. Methods We prospectively studied 103 in-patients admitted to a Northern-Italian hospital (age 66.1 ± 14.1 years, 70 males) for severely-symptomatic COVID-19. Fifty-two subjects with SARS-CoV-2 infection but mild COVID-19 symptoms (mildly-symptomatic COVID-19 patients) and 206 subjects without SARS-CoV-2 infection were controls. We measured 25OHD and IL-6 levels at admission and focused on respiratory outcome during hospitalization. Results Severely-symptomatic COVID-19 patients had lower 25OHD levels (18.2 ± 11.4 ng/mL) than mildly-symptomatic COVID-19 patients and non-SARS-CoV-2-infected controls (30.3 ± 8.5 ng/mL and 25.4 ± 9.4 ng/mL, respectively, p < 0.0001 for both comparisons). 25OHD and IL-6 levels were respectively lower and higher in severely-symptomatic COVID-19 patients admitted to intensive care Unit [(ICU), 14.4 ± 8.6 ng/mL and 43.0 (19.0–56.0) pg/mL, respectively], than in those not requiring ICU admission [22.4 ± 1.4 ng/mL, p = 0.0001 and 16.0 (8.0–32.0) pg/mL, p = 0.0002, respectively]. Similar differences were found when comparing COVID-19 patients who died in hospital [13.2 ± 6.4 ng/mL and 45.0 (28.0–99.0) pg/mL] with survivors [19.3 ± 12.0 ng/mL, p = 0.035 and 21.0 (10.5–45.9) pg/mL, p = 0.018, respectively). 25OHD levels inversely correlated with: i) IL-6 levels (ρ − 0.284, p = 0.004); ii) the subsequent need of the ICU admission [relative risk, RR 0.99, 95% confidence interval (95%CI) 0.98–1.00, p = 0.011] regardless of age, gender, presence of at least 1 comorbidity among obesity, diabetes, arterial hypertension, creatinine, IL-6 and lactate dehydrogenase levels, neutrophil cells, lymphocytes and platelets count; iii) mortality (RR 0.97, 95%CI, 0.95–0.99, p = 0.011) regardless of age, gender, presence of diabetes, IL-6 and C-reactive protein and lactate dehydrogenase levels, neutrophil cells, lymphocytes and platelets count. Conclusion In our COVID-19 patients, low 25OHD levels were inversely correlated with high IL-6 levels and were independent predictors of COVID-19 severity and mortality
    corecore