272 research outputs found

    Granular cell tumor of the trachea as a rare cause of dyspnea in a young woman

    Get PDF
    Tracheal granular cell tumors are rare neurogenic neoplasms characterized by an indolent behavior. We report the case of a young woman affected by this tumor with non-specific clinical presentation. We performed a literature search in order to identify all the cases of tracheal granular cell tumor and to summarize the current state of knowledge about this rare disease

    Atypical chemokine receptors : from silence to sound

    Get PDF
    ACRs (atypical chemokine receptors) were initially referred to as 'silent' receptors on the basis of a lack of signalling and functional activities that are typically observed with conventional chemokine receptors. Although ACRs do not directly induce cell migration, they indirectly control leucocyte recruitment by shaping chemokine gradients in tissues through degradation, transcytosis or local concentration of their cognate ligands. Recent evidence also suggests that these biological activities are supported by G-protein-independent, beta-arrestin-dependent signalling events. In the present article, we review current knowledge on structural and signalling properties of ACRs that are changing our view on this entire class of receptors from silent to endogenous beta-arrestin-biased signalling receptors

    Merging of vortices and antivortices in polariton superfluids

    Get PDF
    Quantised vortices are remarkable manifestations on a macroscopic scale of the coherent nature of quantum fluids, and the study of their properties is of fundamental importance for the understanding of this peculiar state of matter. Cavity-polaritons, due to their double light-matter nature, offer a unique controllable environment to investigate these properties. In this work we theoretically investigate the possibility to deterministically achieve the annihilation of a vortex with an antivortex through the increase of the polariton density in the region surrounding the vortices. Moreover we demonstrate that by means of this mechanism an array of vortex-antivortex pairs can be completely washed out

    The first genetic landscape of inherited retinal dystrophies in Portuguese patients identifies recurrent homozygous mutations as a frequent cause of pathogenesis.

    Get PDF
    Inherited retinal diseases (IRDs) are a group of ocular conditions characterized by an elevated genetic and clinical heterogeneity. They are transmitted almost invariantly as monogenic traits. However, with more than 280 disease genes identified so far, association of clinical phenotypes with genotypes can be very challenging, and molecular diagnosis is essential for genetic counseling and correct management of the disease. In addition, the prevalence and the assortment of IRD mutations are often population-specific. In this work, we examined 230 families from Portugal, with individuals suffering from a variety of IRD diagnostic classes (270 subjects in total). Overall, we identified 157 unique mutations (34 previously unreported) in 57 distinct genes, with a diagnostic rate of 76%. The IRD mutational landscape was, to some extent, different from those reported in other European populations, including Spanish cohorts. For instance, the EYS gene appeared to be the most frequently mutated, with a prevalence of 10% among all IRD cases. This was, in part, due to the presence of a recurrent and seemingly founder mutation involving the deletion of exons 13 and 14 of this gene. Moreover, our analysis highlighted that as many as 51% of our cases had mutations in a homozygous state. To our knowledge, this is the first study assessing a cross-sectional genotype-phenotype landscape of IRDs in Portugal. Our data reveal a rather unique distribution of mutations, possibly shaped by a small number of rare ancestral events that have now become prevalent alleles in patients

    Interaction-shaped vortex-antivortex lattices in polariton fluids

    Get PDF
    Topological defects such as quantized vortices are one of the most striking manifestations of the superfluid nature of Bose-Einstein condensates and typical examples of quantum mechanical phenomena on a macroscopic scale. Here we demonstrate the formation of a lattice of vortex-antivortex pairs and study, for the first time, its properties in the non-linear regime at high polarion-density where polariton-polariton interactions dominate the behaviour of the system. In this work first we demonstrate that the array of vortex-antivortex pairs can be generated in a controllable way in terms of size of the array and in terms of size and shape of it fundamental unit cell. Then we demonstrate that polariton-polariton repulsion can strongly deform the lattice unit cell and determine the pattern distribution of the vortex-antivortex pairs, reaching a completely new behaviour with respect to geome
    corecore