89 research outputs found

    Effect of meso vs macro-size of hierarchical porous silica on the adsorption and activity of immobilized beta-galactosidase

    Get PDF
    beta-Galactosidase (beta-Gal) is one of the most important enzymes used in milk processing for improving their nutritional quality and digestibility. Herein, beta-Gal has been entrapped into a meso-macroporous material (average pore size 9 and 200 nm, respectively) prepared by a sol&-gel method from a silica precursor and a dispersion of solid lipid nanoparticles in a micelle phase. The physisorption of the enzyme depends on the concentration of the feed solution and on the pore size of the support. The enzyme is preferentially adsorbed either in mesopores or in macropores, depending on its initial concentration. Moreover, this selective adsorption, arising from the oligomeric complexation of the enzyme (monomer/dimer/tetramer), has an effect on the catalytic activity of the material. Indeed, the enzyme encapsulated in macropores is more active than the enzyme immobilized in mesopores. Designed materials containing &;946#-Gal are of particular interest for food applications and potentially extended to bioconversion, bioremediation, or biosensing when coupling the designed support with other enzymes.7Âş Programa Marco de la UE FP7/2007-2013/, Programa People

    Preparation of hexagonal GeO2 particles with particle size and crystallinity controlled by peptides, silk and silk-peptide chimeras

    Get PDF
    We demonstrate the use of silk based proteins to control the particle/crystallite size during GeO2 formation, using a bio-mimetic approach at circumneutral pH and ambient temperature. Multicrystalline GeO2 was prepared from germanium tetraethoxide (TEOG) in the presence of different silk-based proteins: Bombyx mori silk (native silk) and two chimeric proteins prepared by linking a germania binding peptide (Ge28: HATGTHGLSLSH) with Bombyx mori silk via chemical coupling at different peptide loadings (silk-Ge28 10% and silk-Ge28 50%). The mineralisation activity of the silk-based proteins was compared with that of peptide Ge28 as a control system. GeO2 mineralisation was investigated in water and in citric acid/bis-tris propane buffer at pH 6. Morphology, particle size, crystallinity, water and organic content of the materials obtained were analysed to study the effect of added biomolecules and mineralisation environment on material properties. In the presence of silk additives well-defined cube-shape hybrid materials composed of hexagonal germania and up to ca. 5 wt% organic content were obtained. The cubic particles ranged from 0.4 to 1.4m in size and were composed of crystalline domains in the range 35-106 nm depending on the additive used and synthesis conditions

    Équilibres en Calcium dans les Systèmes Lactés – Étude des Interactions Calcium-Protéines

    No full text
    ABSTRACT. Calcium (Ca) is a mineral essential for life. Hence Ca supplementation of food is a world-wide health stake. Ca equilibrium between soluble and colloidal phases was studied in milky systems (milk, Non Hydrolysed, NH, or Hydrolysed, H, soy milks). Calcium chloride supplementation (CC, 25 mmoles.kg-1) was followed by pH cycle (pHmin 5.5 or 3.5). pH, Ca2+, turbidity and apparent viscosity were recorded in situ. Ca equilibria were related to protein phase variations. Contrarily to milk, Ca2+ concentration was initially negligible in soy milks. Yet, whatever the milky system, Ca2+ increased upon CC addition and with acidification, and decreased during alkalinization. For reference milk, pH cycle to 5.5 was reversible neither on Ca2+ variations nor on protein phase contrarily to CC- milk. This could be due to the previous capture of Ca during supplementation, involving casein micelles reinforcement through Ca-protein interactions. For pH cycle to 5.5, acid-induced aggregation was partially and completely reversible upon alkalinization for NH and H-soy milks, respectively. Once CC addition, Ca-induced aggregation was irreversible and pH cycle had minor effects. Whatever the system, the irreversibility of phenomena was observed for pH cycle to 3.5. Ca-(milk or soy) protein interactions studied by ITC showed similar endothermic signals, probably due to the water release occurring upon interaction. Ca binding should rather be described as H+/Ca2+ exchange with respect to the electrostatic forces involved. Finally, Ca-binding sites were identified with FTIR spectroscopy. A decrease of the absorption energy in the amide I and II region and in the carboxylate region occurred upon CC-addition, with higher variations in soy milks.Le calcium (Ca) est un minéral essentiel pour la vie et de ce fait, la supplémentation en Ca est un enjeu de santé mondial. Les équilibres en calcium (Ca) entre la phase soluble et la phase colloïdale ont été étudiés dans des systèmes lactés (laits de vache, de soja Hydrolysé ou Non-Hydrolysé). La supplémentation en Ca (CaCl2, CC, 25 mmoles.kg-1) a été suivie d’un cycle de pH (pHmin 5,5 ou 3,5). Le pH, la concentration en calcium ionisé (Ca2+), la turbidité et la viscosité apparente ont été reliés aux variations de la phase protéique. La concentration en Ca2+, initialement négligeable dans le lait de soja, augmente avec l’addition en Ca, ainsi qu’avec l’acidification et diminue lors de l’alcalinisation. Pour le lait de vache non supplémenté, le cycle de pH à 5,5 n’est réversible ni sur les variations en Ca2+, ni sur les variations de la phase protéique, contrairement au lait de vache supplémenté en Ca. Ceci pourrait être dû à la capture préalable en Ca, entraînant un renforcement des micelles de caséines. Pour des cycles de pH à 5,5, l’agrégation induite par l’acidification est partiellement ou complètement réversible lors de l’alcalinisation pour les laits de soja NH et H, mais l’agrégation induite par le Ca est irréversible. Quelque soit le système étudié, des phénomènes irréversibles sont observés lors de cycle du pH à 3,5. Les interactions Ca-protéines (de vache ou de soja) étudiées par CTI montrent des signaux endothermiques similaires, probablement dû au relargage de molécules d’eau. La liaison du Ca pourrait être décrite comme un échange H+/Ca2+ étant donné les force électrostatiques impliquées. Les sites de fixation du Ca on été identifiés par IR-TF. Une diminution de l’énergie d’absorption dans les région amides I et II et dans la région carboxylate s’est produite lors de l’addition de Ca, avec de plus grandes variations pour les laits de soja

    Calcium equilibrium in milky systems between colloidal and soluble phase - study of calcium - protein interactions

    No full text
    Les équilibres en calcium (Ca) entre la phase soluble et la phase colloïdale ont été étudiés dans des systèmes lactés (laits de vache, de soja Hydrolysé ou Non-Hydrolysé). La supplémentation en Ca (CaCl2, CC, 25 mmoles.kg-1) a été suivie d’un cycle de pH (pHmin 5,5 ou 3,5). Le pH, la concentration en calcium ionisé (Ca2+), la turbidité et la viscosité apparente ont été reliés aux variations de la phase protéique. La concentration en Ca2+, initialement négligeable dans le lait de soja, augmente avec l’addition en Ca, ainsi qu’avec l’acidification et diminue lors de l’alcalinisation. Pour le lait de vache non supplémenté, le cycle de pH à 5,5 n’est réversible ni sur les variations en Ca2+, ni sur les variations de la phase protéique, contrairement au lait de vache supplémenté en Ca. Ceci pourrait être dû à la capture préalable en Ca, entraînant un renforcement des micelles de caséines. Pour des cycles de pH à 5,5, l’agrégation induite par l’acidification est partiellement ou complètement réversible lors de l’alcalinisation pour les laits de soja NH et H, mais l’agrégation induite par le Ca est irréversible. Quelque soit le système, des phénomènes sont irréversibles lors de cycle de pH à 3,5. Les interactions Ca-protéines (de vache ou de soja) étudiées par CTI montrent des signaux endothermiques similaires, probablement dû au relargage de molécules d’eau. La liaison du Ca pourrait être décrite comme un échange H+/Ca2+ étant donné les force électrostatiques impliquées. Les sites de fixation du Ca on été identifiés par IR-TF. L’énergie d’absorption diminue dans les région amides I et II et dans la région carboxylate lors de l’addition de CaCa equilibrium between soluble and colloidal phases was studied in milky systems (milk, Non Hydrolysed, NH, or Hydrolysed, H, soy milks). Calcium chloride supplementation (CC, 25 mmoles.kg-1) was followed by pH cycle (pHmin 5.5 or 3.5). pH, Ca2+, turbidity and apparent viscosity were recorded in situ. Ca equilibria were related to protein phase variations. Contrarily to milk, Ca2+ concentration was initially negligible in soy milks. Yet, whatever the milky system, Ca2+ increased upon CC addition and with acidification, and decreased during alkalinization. For reference milk, pH cycle to 5.5 was reversible neither on Ca2+ variations nor on protein phase contrarily to CC-milk. This could be due to the previous capture of Ca during supplementation, involving casein micelles reinforcement through Ca-protein interactions. For pH cycle to 5.5, acid-induced aggregation was partially and completely reversible upon alkalinization for NH and H-soy milks, respectively. Once CC addition, Ca-induced aggregation was irreversible and pH cycle had minor effects. Whatever the system, the irreversibility of phenomena was observed for pH cycle to 3.5. Ca-(milk or soy) protein interactions studied by ITC showed similar endothermic signals, probably due to the water release occurring upon interaction. Ca binding should rather be described as H+/Ca2+ exchange with respect to the electrostatic forces involved. Finally, Ca-binding sites were identified with FTIR spectroscopy. A decrease of the absorption energy in the amide I and II region and in the carboxylate region occurred upon CC-addition, with higher variations in soy milk

    Équilibre en calcium dans les systèmes lactés - Étude des interactions calcium-protéines

    No full text
    Ca equilibrium between soluble and colloidal phases was studied in milky systems (milk, Non Hydrolysed, NH, or Hydrolysed, H, soy milks). Calcium chloride supplementation (CC, 25 mmoles.kg-1) was followed by pH cycle (pHmin 5.5 or 3.5). pH, Ca2+, turbidity and apparent viscosity were recorded in situ. Ca equilibria were related to protein phase variations. Contrarily to milk, Ca2+ concentration was initially negligible in soy milks. Yet, whatever the milky system, Ca2+ increased upon CC addition and with acidification, and decreased during alkalinization. For reference milk, pH cycle to 5.5 was reversible neither on Ca2+ variations nor on protein phase contrarily to CC-milk. This could be due to the previous capture of Ca during supplementation, involving casein micelles reinforcement through Ca-protein interactions. For pH cycle to 5.5, acid-induced aggregation was partially and completely reversible upon alkalinization for NH and H-soy milks, respectively. Once CC addition, Ca-induced aggregation was irreversible and pH cycle had minor effects. Whatever the system, the irreversibility of phenomena was observed for pH cycle to 3.5. Ca-(milk or soy) protein interactions studied by ITC showed similar endothermic signals, probably due to the water release occurring upon interaction. Ca binding should rather be described as H+/Ca2+ exchange with respect to the electrostatic forces involved. Finally, Ca-binding sites were identified with FTIR spectroscopy. A decrease of the absorption energy in the amide I and II region and in the carboxylate region occurred upon CC-addition, with higher variations in soy milksLes équilibres en calcium (Ca) entre la phase soluble et la phase colloïdale ont été étudiés dans des systèmes lactés (laits de vache, de soja Hydrolysé ou Non-Hydrolysé). La supplémentation en Ca (CaCl2, CC, 25 mmoles.kg-1) a été suivie d'un cycle de pH (pHmin 5,5 ou 3,5). Le pH, la concentration en calcium ionisé (Ca2+), la turbidité et la viscosité apparente ont été reliés aux variations de la phase protéique. La concentration en Ca2+, initialement négligeable dans le lait de soja, augmente avec l'addition en Ca, ainsi qu'avec l'acidification et diminue lors de l'alcalinisation. Pour le lait de vache non supplémenté, le cycle de pH à 5,5 n'est réversible ni sur les variations en Ca2+, ni sur les variations de la phase protéique, contrairement au lait de vache supplémenté en Ca. Ceci pourrait être dû à la capture préalable en Ca, entraînant un renforcement des micelles de caséines. Pour des cycles de pH à 5,5, l'agrégation induite par l'acidification est partiellement ou complètement réversible lors de l'alcalinisation pour les laits de soja NH et H, mais l'agrégation induite par le Ca est irréversible. Quelque soit le système, des phénomènes sont irréversibles lors de cycle de pH à 3,5. Les interactions Ca-protéines (de vache ou de soja) étudiées par CTI montrent des signaux endothermiques similaires, probablement dû au relargage de molécules d'eau. La liaison du Ca pourrait être décrite comme un échange H+/Ca2+ étant donné les force électrostatiques impliquées. Les sites de fixation du Ca on été identifiés par IR-TF. L'énergie d'absorption diminue dans les région amides I et II et dans la région carboxylate lors de l'addition de C

    Antioxidant properties of phenolic surrogates of lignin depolymerisation

    No full text
    International audienc

    Separation of phenols from lignin pyrolysis oil using ionic liquid

    No full text
    International audienceThe aim of this work was to propose an efficient process to extract phenolic compounds from bio-oils produced by lignin pyrolysis. The extraction of phenolic compounds from the crude bio-oils was performed in two steps. First, a 5-stages liquid-liquid extraction (LLE) was performed with a basic aqueous solution. The second step consisted of a 4-stages LLE carried out with either ethyl acetate or [Choline][NTf 2 ] ionic liquid as a green alternative solvent. It was found that the extraction of the phenolic compounds with the basic aqueous solution in the first LLE needs improvement. The extraction rates show that [Choline][NTf 2 ] is an excellent solvent for the recovery of phenolic compounds from aqueous solution as compared to the classical ethyl acetate organic solvent

    Calcium equilibrium in milky systems between colloidal and soluble phase - study of calcium - protein interactions

    No full text
    Les équilibres en calcium (Ca) entre la phase soluble et la phase colloïdale ont été étudiés dans des systèmes lactés (laits de vache, de soja Hydrolysé ou Non-Hydrolysé). La supplémentation en Ca (CaCl2, CC, 25 mmoles.kg-1) a été suivie d un cycle de pH (pHmin 5,5 ou 3,5). Le pH, la concentration en calcium ionisé (Ca2+), la turbidité et la viscosité apparente ont été reliés aux variations de la phase protéique. La concentration en Ca2+, initialement négligeable dans le lait de soja, augmente avec l addition en Ca, ainsi qu avec l acidification et diminue lors de l alcalinisation. Pour le lait de vache non supplémenté, le cycle de pH à 5,5 n est réversible ni sur les variations en Ca2+, ni sur les variations de la phase protéique, contrairement au lait de vache supplémenté en Ca. Ceci pourrait être dû à la capture préalable en Ca, entraînant un renforcement des micelles de caséines. Pour des cycles de pH à 5,5, l agrégation induite par l acidification est partiellement ou complètement réversible lors de l alcalinisation pour les laits de soja NH et H, mais l agrégation induite par le Ca est irréversible. Quelque soit le système, des phénomènes sont irréversibles lors de cycle de pH à 3,5. Les interactions Ca-protéines (de vache ou de soja) étudiées par CTI montrent des signaux endothermiques similaires, probablement dû au relargage de molécules d eau. La liaison du Ca pourrait être décrite comme un échange H+/Ca2+ étant donné les force électrostatiques impliquées. Les sites de fixation du Ca on été identifiés par IR-TF. L énergie d absorption diminue dans les région amides I et II et dans la région carboxylate lors de l addition de CaCa equilibrium between soluble and colloidal phases was studied in milky systems (milk, Non Hydrolysed, NH, or Hydrolysed, H, soy milks). Calcium chloride supplementation (CC, 25 mmoles.kg-1) was followed by pH cycle (pHmin 5.5 or 3.5). pH, Ca2+, turbidity and apparent viscosity were recorded in situ. Ca equilibria were related to protein phase variations. Contrarily to milk, Ca2+ concentration was initially negligible in soy milks. Yet, whatever the milky system, Ca2+ increased upon CC addition and with acidification, and decreased during alkalinization. For reference milk, pH cycle to 5.5 was reversible neither on Ca2+ variations nor on protein phase contrarily to CC-milk. This could be due to the previous capture of Ca during supplementation, involving casein micelles reinforcement through Ca-protein interactions. For pH cycle to 5.5, acid-induced aggregation was partially and completely reversible upon alkalinization for NH and H-soy milks, respectively. Once CC addition, Ca-induced aggregation was irreversible and pH cycle had minor effects. Whatever the system, the irreversibility of phenomena was observed for pH cycle to 3.5. Ca-(milk or soy) protein interactions studied by ITC showed similar endothermic signals, probably due to the water release occurring upon interaction. Ca binding should rather be described as H+/Ca2+ exchange with respect to the electrostatic forces involved. Finally, Ca-binding sites were identified with FTIR spectroscopy. A decrease of the absorption energy in the amide I and II region and in the carboxylate region occurred upon CC-addition, with higher variations in soy milksNANCY-INPL-Bib. électronique (545479901) / SudocSudocFranceF
    • …
    corecore