863 research outputs found

    Diastereoselective synthesis of beta-aminosulfones from the 1,2-addition to N-(para-methoxyphenyl) imines

    Get PDF
    The base-promoted 1,2-addition of alkyl phenylsulfones to N-(para-methoxyphenyl) imines was investigated as a direct route to stereochemically defined β-aminosulfones. Using nBuLi as base, 2-(phenylsulfonyl)ethylbenzene was added to a range of N-(para-methoxyphenyl) imines to give β-aminosulfone products in high yields as single anti-diastereoisomers. Other less substituted alkyl phenylsulfones were not as successful

    Probing quantum phases of ultracold atoms in optical lattices by transmission spectra in cavity QED

    Get PDF
    Studies of ultracold atoms in optical lattices link various disciplines, providing a playground where fundamental quantum many-body concepts, formulated in condensed-matter physics, can be tested in much better controllable atomic systems, e.g., strongly correlated phases, quantum information processing. Standard methods to measure quantum properties of Bose-Einstein condensates (BECs) are based on matter-wave interference between atoms released from traps which destroys the system. Here we propose a nondestructive method based on optical measurements, and prove that atomic statistics can be mapped on transmission spectra of a high-Q cavity. This can be extremely useful for studying phase transitions between Mott insulator and superfluid states, since various phases show qualitatively distinct light scattering. Joining the paradigms of cavity quantum electrodynamics (QED) and ultracold gases will enable conceptually new investigations of both light and matter at ultimate quantum levels, which only recently became experimentally possible. Here we predict effects accessible in such novel setups.Comment: 6 pages, 3 figure

    Stereoselective synthesis of 1,2-diamine containing indolines by a conjugate addition nitro-Mannich reaction.

    Get PDF
    A conjugate addition nitro-Mannich reaction followed by nitro reduction and intramolecular N-arylation gives diastereomerically pure substituted 1,2-diamine containing indolines. Placing the N-arylation cyclisation handle on the imine precursor derived from an ortho-bromine substituted aromatic aldehyde gave the corresponding β-nitroamines in 55-72% yields as single diastereoisomers. Nitro reduction was effected with modified quantities of Zn/HCl and a subsequent Pd(0) catalysed Buchwald Hartwig cyclisation gave indoline products in 40-70% yields as single diastereoisomers

    Base-Controlled Diastereoselective Synthesis of Either anti- or syn-β-Aminonitriles

    Get PDF
    Deprotonation of secondary alkane nitriles with nBuLi and addition to aryl imines gives kinetic anti-β-aminonitriles. Use of LHMDS allows reversible protonation of the reaction intermediate to give syn-β-aminonitriles. The pure diastereosiomers can be isolated in good yields, and the mechanism was elucidated

    Reductive conjugate addition nitro-Mannich route for the stereoselective synthesis of 1,2,3,4-tetrahydroquinoxalines

    Get PDF
    A concise, high yielding and structurally divergent synthesis of complex 1,2,3,4-tetrahydroquinoxalines with excellent diastereoselectivity is described. A wide array of nitroalkenes and imines derived from commercially available aromatic aldehydes and 2-chloroanalines were subjected to a key reductive conjugate addition nitro-Mannich reaction to give diastereomerically pure β-nitro amines. Sequential reduction of the nitro function followed by Pd-catalyzed intramolecular N-arylation of the resultant primary amine onto the 2-chloroanailine gives highly substituted 1,2,3,4-tetrahydroquinoxalines. Non basic imines were found to participate better in the nitro-Mannich reaction if the stronger acid methanesulfonic acid was used to promote the reaction. The 3 step reaction sequence should be useful for the array synthesis of drug like scaffolds

    Single-Atom Resolved Fluorescence Imaging of an Atomic Mott Insulator

    Get PDF
    The reliable detection of single quantum particles has revolutionized the field of quantum optics and quantum information processing. For several years, researchers have aspired to extend such detection possibilities to larger scale strongly correlated quantum systems, in order to record in-situ images of a quantum fluid in which each underlying quantum particle is detected. Here we report on fluorescence imaging of strongly interacting bosonic Mott insulators in an optical lattice with single-atom and single-site resolution. From our images, we fully reconstruct the atom distribution on the lattice and identify individual excitations with high fidelity. A comparison of the radial density and variance distributions with theory provides a precise in-situ temperature and entropy measurement from single images. We observe Mott-insulating plateaus with near zero entropy and clearly resolve the high entropy rings separating them although their width is of the order of only a single lattice site. Furthermore, we show how a Mott insulator melts for increasing temperatures due to a proliferation of local defects. Our experiments open a new avenue for the manipulation and analysis of strongly interacting quantum gases on a lattice, as well as for quantum information processing with ultracold atoms. Using the high spatial resolution, it is now possible to directly address individual lattice sites. One could, e.g., introduce local perturbations or access regions of high entropy, a crucial requirement for the implementation of novel cooling schemes for atoms on a lattice

    Interaction and filling induced quantum phases of dual Mott insulators of bosons and fermions

    Full text link
    Many-body effects are at the very heart of diverse phenomena found in condensed-matter physics. One striking example is the Mott insulator phase where conductivity is suppressed as a result of a strong repulsive interaction. Advances in cold atom physics have led to the realization of the Mott insulating phases of atoms in an optical lattice, mimicking the corresponding condensed matter systems. Here, we explore an exotic strongly-correlated system of Interacting Dual Mott Insulators of bosons and fermions. We reveal that an inter-species interaction between bosons and fermions drastically modifies each Mott insulator, causing effects that include melting, generation of composite particles, an anti-correlated phase, and complete phase-separation. Comparisons between the experimental results and numerical simulations indicate intrinsic adiabatic heating and cooling for the attractively and repulsively interacting dual Mott Insulators, respectively

    Frontal lobe changes occur early in the course of affective disorders in young people

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>More severe and persistent forms of affective disorders are accompanied by grey matter loss in key frontal and temporal structures. It is unclear whether such changes precede the onset of illness, occur early in the course or develop gradually with persistence or recurrence of illness. A total of 47 young people presenting with admixtures of depressive and psychotic symptoms were recruited from specialist early intervention services along with 33 age matched healthy control subjects. All participants underwent magnetic resonance imaging and patients were rated clinically as to current stage of illness. Twenty-three patients were identified as being at an early 'attenuated syndrome' stage, while the remaining were rated as having already reached the 'discrete disorder' or 'persistent or recurrent illness' stage. Contrasts were carried out between controls subjects and patients cohorts with attenuated syndromes and discrete disorders, separately.</p> <p>Results</p> <p>The patients that were identified as having a discrete or persisting disorder demonstrated decreased grey matter volumes within distributed frontal brain regions when contrasted to both the control subjects as well as those patients in the attenuated syndrome stage. Overall, patients who were diagnosed as more advanced in terms of the clinical stage of their illness, exhibited the greatest grey matter volume loss of all groups.</p> <p>Conclusions</p> <p>This study suggests that, in terms of frontal grey matter changes, a major transition point may occur in the course of affective illness between early attenuated syndromes and later discrete illness stages.</p

    Maternal Arterial Stiffness in Women Who Subsequently Develop Pre-Eclampsia

    Get PDF
    BACKGROUND/OBJECTIVES: Pre-eclampsia (PE) is associated with profound changes in the maternal cardiovascular system. The aim of the present study was to assess whether alterations in the maternal arterial stiffness precede the onset of PE in at risk women. METHODOLOGY/PRINCIPAL FINDINGS: This was a cross sectional study involving 70 pregnant women with normal and 70 women with abnormal uterine artery Doppler examination at 22-24 weeks of gestation. All women had their arterial stiffness (augmentation index and pulse wave velocity of the carotid-femoral and carotid-radial parts of the arterial tree) assessed by applanation tonometry in the second trimester of pregnancy, at the time of the uterine artery Doppler imaging. Among the 140 women participating in the study 29 developed PE (PE group) and 111 did not (non-PE group). Compared to the non-PE group, women that developed PE had higher central systolic (94.9 ± 8.6 mmHg vs 104.3 ± 11.1 mmHg; p  =  < 0.01) and diastolic (64.0 ± 6.0 vs 72.4 ± 9.1; p < 0.01) blood pressures. All the arterial stiffness indices were adjusted for possible confounders and expressed as multiples of the median (MoM) of the non-PE group. The adjusted median augmentation index was similar between the two groups (p  =  0.84). The adjusted median pulse wave velocities were higher in the PE group compared to the non-PE group (carotid-femoral: 1.10 ± 0.14 MoMs vs 0.99 ± 0.11 MoMs; p < 0.01 and carotid-radial: 1.08 ± 0.12 MoMs vs 1.0 ± 0.11 MoMs; p < 0.01). CONCLUSIONS/SIGNIFICANCE: Increased maternal arterial stiffness, as assessed by pulse wave velocity, predates the development of PE in at risk women

    Ostwald ripening in a Pt/SiO2 model catalyst studied by in situ TEM

    Get PDF
    Sintering of Pt nanoparticles dispersed on a planar SiO(2) support was studied by in situ transmission electron microscopy (TEM). A time-lapsed TEM image series of the Pt nanoparticles, acquired during the exposure to 10 mbar synthetic air at 650 degrees C, reveal that the sintering was governed by the Ostwald ripening mechanism. The in situ TEM images also provide information about the temporal evolution of the Pt particle size distribution and of the growth or decay of the individual nanoparticles. The observed Pt nanoparticle changes compare well with predictions made by mean-field kinetic models for ripening, but deviations are revealed for the time-evolution for the individual nanoparticles. A better description of the individual nanoparticle ripening is obtained by kinetic models that include local correlations between neighboring nanoparticles in the atom-exchange process
    corecore