1,548 research outputs found

    Nitrogen effects on water use efficiency in the semi-arid Canadian prairies

    Get PDF
    Non-Peer ReviewedIn the semiarid environment of the Canadian prairies, water is the main constraint to crop production. Few studies have examined the influence of fertilizer on water use efficiency (WUE) and fewer still have made comparisons on a cropping system basis. We assessed the impact of fertilizer N on WUE in a 39-year crop rotation experiment conducted on a Brown Chernozemic soil at Swift Current, Saskatchewan. The cropping systems included continuous wheat (Cont W) with N+P and P fertilizer alone, and a fallow-wheat-wheat (F-W-W) system with N+P and P only. All cropping systems were managed using conventional tillage practices. We developed an equation to asses WUE of the cropping systems that included water use during the fallow year. We also calculated precipitation use efficiency (PUE, i.e., yield/harvest-to-harvest precipitation). WUE and PUE values and fertilizer effects were greatest in the later third of the study period, due to the increase in recommended fertilizer N rates applied and the more favorable moisture conditions that prevailed. We converted PUE results into net return values (ha−1mm−1water)byassuminganaveragepriceoverthe39−yrperiodandfoundthatNfertilizerintheContWsystemearnedanaveragereturnabovefertilizercostof ha-1 mm-1 water) by assuming an average price over the 39-yr period and found that N fertilizer in the Cont W system earned an average return above fertilizer cost of 36.39 ha-1 yr-1 and $9.81 ha-1 yr-1in the F-W-W system

    Enhanced critical current density of YBa2Cu3Ox films grown on Nd1/3Eu1/3Gd1/3Ba2Cu3Ox with nano-undulated surface morphology

    Full text link
    We report a simple and easily controllable method where a nano-undulated surface morphology of Nd1/3Eu1/3Gd1/3Ba2Cu3Ox (NEG) films leads to a substantial increase in the critical current density in superconducting YBa2Cu3Ox (YBCO) films deposited by pulsed laser deposition on such NEG layers. The enhancement is observed over a wide range of fields and temperatures. Transmission electron microscopy shows that such YBCO films possess a high density of localized areas, typically 20 x 20 nm2 in size, where distortion of atomic planes give rotational (2 to 5 degrees) moire patterns. Their distribution is random and uniform, and expected to be the origin of the enhanced flux pinning. Magneto-optical imaging shows that these films have excellent macroscopic magnetic uniformity.Comment: 4 pages, 4 figure

    Recent results on GaAs detectors - 137

    Get PDF
    The present understanding of the charge collection in GaAs detectors with respect to the materials used and its processing are discussed. The radiation induced degradation of the charge collection efficiency and the leakage current of the detectors are summarised. The status of strip and pixel detectors for the ATLAS experiment are reported along with the latest results from GaAs X-ray detectors for non-high energy physics applications.Comment: 7 pages. 4 postscript figures + 1 postscript preprint logo + 1 LaTeX file + 1 style file. Also available at http://ppewww.ph.gla.ac.uk/preprints/97/05

    Ginzburg-Landau vortex dynamics with pinning and strong applied currents

    Full text link
    We study a mixed heat and Schr\"odinger Ginzburg-Landau evolution equation on a bounded two-dimensional domain with an electric current applied on the boundary and a pinning potential term. This is meant to model a superconductor subjected to an applied electric current and electromagnetic field and containing impurities. Such a current is expected to set the vortices in motion, while the pinning term drives them toward minima of the pinning potential and "pins" them there. We derive the limiting dynamics of a finite number of vortices in the limit of a large Ginzburg-Landau parameter, or \ep \to 0, when the intensity of the electric current and applied magnetic field on the boundary scale like \lep. We show that the limiting velocity of the vortices is the sum of a Lorentz force, due to the current, and a pinning force. We state an analogous result for a model Ginzburg-Landau equation without magnetic field but with forcing terms. Our proof provides a unified approach to various proofs of dynamics of Ginzburg-Landau vortices.Comment: 48 pages; v2: minor errors and typos correcte

    Tiered Human Integrated Sequence Search Databases for Shotgun Proteomics.

    Get PDF
    The results of analysis of shotgun proteomics mass spectrometry data can be greatly affected by the selection of the reference protein sequence database against which the spectra are matched. For many species there are multiple sources from which somewhat different sequence sets can be obtained. This can lead to confusion about which database is best in which circumstances-a problem especially acute in human sample analysis. All sequence databases are genome-based, with sequences for the predicted gene and their protein translation products compiled. Our goal is to create a set of primary sequence databases that comprise the union of sequences from many of the different available sources and make the result easily available to the community. We have compiled a set of four sequence databases of varying sizes, from a small database consisting of only the ∌20,000 primary isoforms plus contaminants to a very large database that includes almost all nonredundant protein sequences from several sources. This set of tiered, increasingly complete human protein sequence databases suitable for mass spectrometry proteomics sequence database searching is called the Tiered Human Integrated Search Proteome set. In order to evaluate the utility of these databases, we have analyzed two different data sets, one from the HeLa cell line and the other from normal human liver tissue, with each of the four tiers of database complexity. The result is that approximately 0.8%, 1.1%, and 1.5% additional peptides can be identified for Tiers 2, 3, and 4, respectively, as compared with the Tier 1 database, at substantially increasing computational cost. This increase in computational cost may be worth bearing if the identification of sequence variants or the discovery of sequences that are not present in the reviewed knowledge base entries is an important goal of the study. We find that it is useful to search a data set against a simpler database, and then check the uniqueness of the discovered peptides against a more complex database. We have set up an automated system that downloads all the source databases on the first of each month and automatically generates a new set of search databases and makes them available for download at http://www.peptideatlas.org/thisp/

    Mass Loss Due to Sputtering and Thermal Processes in Meteoroid Ablation

    Full text link
    Conventional meteoroid theory assumes that the dominant mode of ablation is by evaporation following intense heating during atmospheric flight. In this paper we consider the question of whether sputtering may provide an alternative disintegration process of some importance.For meteoroids in the mass range from 10^-3 to 10^-13 kg and covering a meteor velocity range from 11 to 71 km/s, we numerically modeled both thermal ablation and sputtering ablation during atmospheric flight. We considered three meteoroid models believed to be representative of asteroidal (3300 kg m^-3 mass density), cometary (1000 kg m^-3) and porous cometary (300 kg m^-3) meteoroid structures. Atmospheric profiles which considered the molecular compositions at different heights were used in the sputtering calculations. We find that while in many cases (particularly at low velocities and for relatively large meteoroid masses) sputtering contributes only a small amount of mass loss during atmospheric flight, in some cases sputtering is very important. For example, a 10^-10 kg porous meteoroid at 40 km/s will lose nearly 51% of its mass by sputtering, while a 10^-13 kg asteroidal meteoroid at 60 km/s will lose nearly 83% of its mass by sputtering. We argue that sputtering may explain the light production observed at very great heights in some Leonid meteors. The impact of this work will be most dramatic for very small meteoroids such as those observed with large aperture radars.Comment: in pdf form, 48 pgs incl figures and table

    A global Mars dust composition refined by the Alpha-Particle X-ray Spectrometer in Gale Crater

    Get PDF
    Modern Martian dust is similar in composition to the global soil unit and bulk basaltic Mars crust, but it is enriched in S and Cl. The Alpha Particle X-ray Spectrometer (APXS) on the Mars Science Laboratory Curiosity rover analyzed air fall dust on the science observation tray (o-tray) in Gale Crater to determine dust oxide compositions. The o-tray dust has the highest concentrations of SO3 and Cl measured in Mars dust (SO3 8.3%; Cl 1.1 wt %). The molar S/Cl in the dust (3.35 ± 0.34) is consistent with previous studies of Martian dust and soils (S/Cl = 3.7 ± 0.7). Fe is also elevated ~25% over average Mars soils and the bulk crust. These enrichments link air fall dust with the S-, Cl-, and Fe-rich X-ray amorphous component of Gale Crater soil. Dust and soil have the same S/Cl, constraining the surface concentrations of S and Cl on a global scale

    Kaon-Nucleon Scattering Amplitudes and Z∗^*-Enhancements from Quark Born Diagrams

    Get PDF
    We derive closed form kaon-nucleon scattering amplitudes using the ``quark Born diagram" formalism, which describes the scattering as a single interaction (here the OGE spin-spin term) followed by quark line rearrangement. The low energy I=0 and I=1 S-wave KN phase shifts are in reasonably good agreement with experiment given conventional quark model parameters. For klab>0.7k_{lab}> 0.7 Gev however the I=1 elastic phase shift is larger than predicted by Gaussian wavefunctions, and we suggest possible reasons for this discrepancy. Equivalent low energy KN potentials for S-wave scattering are also derived. Finally we consider OGE forces in the related channels KΔ\Delta, K∗^*N and K∗Δ^*\Delta, and determine which have attractive interactions and might therefore exhibit strong threshold enhancements or ``Z∗^*-molecule" meson-baryon bound states. We find that the minimum-spin, minimum-isospin channels and two additional K∗Δ^*\Delta channels are most conducive to the formation of bound states. Related interesting topics for future experimental and theoretical studies of KN interactions are also discussed.Comment: 34 pages, figures available from the authors, revte
    • 

    corecore