2,790 research outputs found

    Development of the Motivational Interviewing Supervision and Training Scale

    Get PDF
    The movement to use empirically supported treatments has increased the need for researchers and supervisors to evaluate therapists’ adherence to and the quality with which they implement those interventions. Few empirically supported approaches exist for providing these types of evaluations. This is also true for motivational interviewing, an empirically supported intervention important in the addictions field. This study describes the development and psychometric evaluation of the Motivational Interviewing Supervision and Training Scale (MISTS), a measure intended for use in training and supervising therapists implementing motivational interviewing. Satisfactory interrater reliability was found (generalizability coefficient p2 = .79), and evidence was found supporting the convergent and discriminant validity of the MISTS. Recommendations for refinement of the measure and future research are discussed

    Humanized zebrafish enhance human hematopoietic stem cell survival and promote acute myeloid leukemia clonal diversity

    Get PDF
    Xenograft models are invaluable tools in establishing the current paradigms of hematopoiesis and leukemogenesis. The zebrafish has emerged as a robust alternative xenograft model but, like mice, lack specific cytokines that mimic the microenvironment found in human patients. To address this critical gap, we generated the first humanized zebrafish that express human hematopoietic-specific cytokines (GM-CSF, SCF, and SDF1α). Termed GSS fish, these zebrafish promote survival, self-renewal and multilineage differentiation of human hematopoietic stem and progenitor cells and result in enhanced proliferation and hematopoietic niche-specific homing of primary human leukemia cells. Using error-corrected RNA sequencing, we determined that patient-derived leukemias transplanted into GSS zebrafish exhibit broader clonal representation compared to transplants into control hosts. GSS zebrafish incorporating error-corrected RNA sequencing establish a new standard for zebrafish xenotransplantation that more accurately recapitulates the human context, providing a more representative cost-effective preclinical model system for evaluating personalized response-based treatment in leukemia and therapies to expand human hematopoietic stem and progenitor cells in the transplant setting

    Improvements in quality of life in children following epicutaneous immunotherapy (EPIT) for peanut allergy in the PEPITES and PEOPLE studies

    Get PDF
    Background: Food allergy quality of life (FAQL) is impaired in children with peanut allergy. Food Allergy Quality of Life Questionnaires (FAQLQs) provide disease-specific insight into the burden of peanut allergy and potential FAQL changes after peanut immunotherapy. Objective: To examine FAQL changes in children after treatment with epicutaneous immunotherapy for peanut allergy (250 μg, daily epicutaneous peanut protein; DBV712 250 μg). Methods: FAQL was prospectively measured using the FAQLQ parent proxy form (Food Allergy Quality of Life Questionnaire-Parent Proxy Form [FAQLQ-PF], for children aged ≤12 years) and child form (Food Allergy Quality of Life Questionnaire-Child Form [FAQLQ-CF], child rated if aged ≥8 years) during the 12-month double-blind, randomized, controlled Peanut EPIT Efficacy and Safety Study (PEPITES) trial and the initial 12 months of the open-label PEPITES Open Label Extension Study (PEOPLE) follow-up study. Data were analyzed for between-group differences after treatment unblinding. Results: FAQLQs from placebo participants (FAQLQ-PF: 96; FAQLQ-CF: 47) and treatment group participants (FAQLQ-PF: 209; FAQLQ-CF: 105) were analyzed. Twenty-four–month global FAQL scores (FAQLQ-PF/FAQLQ-CF) were significantly improved in the treatment group versus the placebo group (least squares mean, 0.34, P = .008, and 0.46, P = .023, respectively). At 24 months, there was significant FAQLQ-PF score improvement in participants initially randomized to treatment who met the efficacy primary end point (n = 74; least squares mean, 0.55; P < .001) and in participants with any eliciting dose increase (n = 127; least squares mean, 0.66; P < .001). FAQLQ-PF improvements were observed in social dietary limitations (P = .002), food-related anxiety (P = .029), and emotional impact (P = .048) domains. FAQLQ-CF improvements were observed in risk of accidental exposure (P = .002) and allergen avoidance (P = .04) domains. Nearly all outcomes met a nontreatment context minimal clinically important difference previously cited for FAQLQ. Conclusions: Epicutaneous immunotherapy treatment was observed to be associated with significant global and domain-specific FAQL improvement (FAQLQ-PF/FAQLQ-CF), largely driven by increases in eliciting dose, in children with peanut allergy

    Suprachiasmatic VIP neurons are required for normal circadian rhythmicity and comprised of molecularly distinct subpopulations

    Get PDF
    The hypothalamic suprachiasmatic (SCN) clock contains several neurochemically defined cell groups that contribute to the genesis of circadian rhythms. Using cell-specific and genetically targeted approaches we have confirmed an indispensable role for vasoactive intestinal polypeptide-expressing SCN (SCN(VIP)) neurons, including their molecular clock, in generating the mammalian locomotor activity (LMA) circadian rhythm. Optogenetic-assisted circuit mapping revealed functional, di-synaptic connectivity between SCN(VIP) neurons and dorsomedial hypothalamic neurons, providing a circuit substrate by which SCN(VIP) neurons may regulate LMA rhythms. In vivo photometry revealed that while SCN(VIP) neurons are acutely responsive to light, their activity is otherwise behavioral state invariant. Single-nuclei RNA-sequencing revealed that SCN(VIP) neurons comprise two transcriptionally distinct subtypes, including putative pacemaker and non-pacemaker populations. Altogether, our work establishes necessity of SCN(VIP) neurons for the LMA circadian rhythm, elucidates organization of circadian outflow from and modulatory input to SCN(VIP) cells, and demonstrates a subpopulation-level molecular heterogeneity that suggests distinct functions for specific SCN(VIP) subtypes

    Planetary Candidates Observed by Kepler. VIII. A Fully Automated Catalog With Measured Completeness and Reliability Based on Data Release 25

    Get PDF
    We present the Kepler Object of Interest (KOI) catalog of transiting exoplanets based on searching four years of Kepler time series photometry (Data Release 25, Q1-Q17). The catalog contains 8054 KOIs of which 4034 are planet candidates with periods between 0.25 and 632 days. Of these candidates, 219 are new and include two in multi-planet systems (KOI-82.06 and KOI-2926.05), and ten high-reliability, terrestrial-size, habitable zone candidates. This catalog was created using a tool called the Robovetter which automatically vets the DR25 Threshold Crossing Events (TCEs, Twicken et al. 2016). The Robovetter also vetted simulated data sets and measured how well it was able to separate TCEs caused by noise from those caused by low signal-to-noise transits. We discusses the Robovetter and the metrics it uses to sort TCEs. For orbital periods less than 100 days the Robovetter completeness (the fraction of simulated transits that are determined to be planet candidates) across all observed stars is greater than 85%. For the same period range, the catalog reliability (the fraction of candidates that are not due to instrumental or stellar noise) is greater than 98%. However, for low signal-to-noise candidates between 200 and 500 days around FGK dwarf stars, the Robovetter is 76.7% complete and the catalog is 50.5% reliable. The KOI catalog, the transit fits and all of the simulated data used to characterize this catalog are available at the NASA Exoplanet Archive.Comment: 61 pages, 23 Figures, 9 Tables, Accepted to The Astrophysical Journal Supplement Serie
    • …
    corecore