27 research outputs found

    Amyloid-β impairs mitochondrial dynamics and autophagy in Alzheimer's disease experimental models

    Get PDF
    The most accepted hypothesis in Alzheimer's disease (AD) is the amyloid cascade which establishes that Aβ accumulation may induce the disease development. This accumulation may occur years before the clinical symptoms but it has not been elucidated if this accumulation is the cause or the consequence of AD. It is however, clear that Aβ accumulation exerts toxic effects in the cerebral cells. It is important then to investigate all possible associated events that may help to design new therapeutic strategies to defeat or ameliorate the symptoms in AD. Alterations in the mitochondrial physiology have been found in AD but it is not still clear if they could be an early event in the disease progression associated to amyloidosis or other conditions. Using APP/PS1 mice, our results support published evidence and show imbalances in the mitochondrial dynamics in the cerebral cortex and hippocampus of these mice representing very early events in the disease progression. We demonstrate in cellular models that these imbalances are consequence of Aβ accumulation that ultimately induce increased mitophagy, a mechanism which selectively removes damaged mitochondria by autophagy. Along with increased mitophagy, we also found that Aβ independently increases autophagy in APP/PS1 mice. Therefore, mitochondrial dysfunction could be an early feature in AD, associated with amyloid overload.This study was supported by Grants from Instituto de Salud Carlos III (PI18/00118; PI21/00183; CP20/00007), FEDER, Comunidad de Madrid (S2017/BMD-3700; NEUROMETAB-CM), and CIBERNED (CB07/502). In addition FW was supported by grants from ISCIII-CIBERNED (CB06/05/0067) and I+D+i-RETOS- RTI2018-096303-B.S

    State-of-the-art polymeric nanoparticles as promising therapeutic tools against human bacterial infections

    Get PDF
    Infectious diseases kill over 17 million people a year, among which bacterial infections stand out. From all the bacterial infections, tuberculosis, diarrhoea, meningitis, pneumonia, sexual transmission diseases and nosocomial infections are the most severe bacterial infections, which affect millions of people worldwide. Moreover, the indiscriminate use of antibiotic drugs in the last decades has triggered an increasing multiple resistance towards these drugs, which represent a serious global socioeconomic and public health risk. It is estimated that 33,000 and 35,000 people die yearly in Europe and the United States, respectively, as a direct result of antimicrobial resistance. For all these reasons, there is an emerging need to find novel alternatives to overcome these issues and reduced the morbidity and mortality associated to bacterial infectious diseases. In that sense, nanotechnological approaches, especially smart polymeric nanoparticles, has wrought a revolution in this field, providing an innovative therapeutic alternative able to improve the limitations encountered in available treatments and capable to be effective by theirselves. In this review, we examine the current status of most dangerous human infections, together with an in-depth discussion of the role of nanomedicine to overcome the current disadvantages, and specifically the most recent and innovative studies involving polymeric nanoparticles against most common bacterial infections of the human body.Authors acknowledge the support of the Spanish Ministry of Economy and Competitiveness (SAF2017-84283-R and RTI2018-098641-B-I00), Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED, CB06/05/0024), Scientifc Project Marató TV3 (ref 201829-10) and European Regional Development Founds. Authors also acknowledge the Portuguese Science and Technology Foundation (FCT) for the strategic fund (UIDB/04469/2020).info:eu-repo/semantics/publishedVersio

    Memòria Digital UPC: Un recorrido por la memoria visual de la Universidad

    Get PDF
    Presentació per a XVIII Workshop REBIUN de Proyectos Digitales y VIII Jornadas de OS Repositorios realitzades el 25-27 de setembre del 2019En 2017 y como horizonte el 50º aniversario de la Universitat Politècnica de Catalunya a celebrar en 2020, el Servei de Biblioteques, Publicacions i Arxius (SBPA), impulsó un proyecto de tratamiento del fondo fotográfico considerado de interés para iniciar la recuperación de la memoria visual de la Universidad. Este proyecto, en explotación desde mayo del 2019 lleva el nombre de “Memòria Digital UPC”. Los objetivos de “Memòria Digital UPC” fueron: Identificar, organizar, describir, digitalizar y difundir, en acceso abierto, el patrimonio fotográfico de la UPC, mostrar la historia de la UPC a lo largo de los 50 años a través de imágenes, la creación de exposiciones virtuales que muestren la actividad académica, cultural y social de la Universidad y finalmente la creación de comunidad como proyecto abierto a la participación de cualquier persona de la UPC.Postprint (author's final draft

    Nanomedicine-based technologies and novel biomarkers for the diagnosis and treatment of Alzheimer's disease from current to future challenges

    Get PDF
    Increasing life expectancy has led to an aging population, which has consequently increased the prevalence of dementia. Alzheimer's disease (AD), the most common form of dementia worldwide, is estimated to make up 50--80% of all cases. AD cases are expected to reach 131 million by 2050, and this increasing prevalence will critically burden economies and health systems in the next decades. There is currently no treatment that can stop or reverse disease progression. In addition, the late diagnosis of AD constitutes a major obstacle to effective disease management. Therefore, improved diagnostic tools and new treatments for AD are urgently needed. In this review, we investigate and describe both well-established and recently discovered AD biomarkers that could potentially be used to detect AD at early stages and allow the monitoring of disease progression. Proteins such as NfL, MMPs, p-tau217, YKL-40, SNAP-25, VCAM-1, and Ng BACE are some of the most promising biomarkers because of their successful use as diagnostic tools. In addition, we explore the most recent molecular strategies for an AD therapeutic approach and nanomedicine-based technologies, used to both target drugs to the brain and serve as devices for tracking disease progression diagnostic biomarkers. State-of-the-art nanoparticles, such as polymeric, lipid, and metal-based, are being widely investigated for their potential to improve the effectiveness of both conventional drugs and novel compounds for treating AD. The most recent studies on these nanodevices are deeply explained and discussed in this review.Authors acknowledge the support of the Instituto de Salud Carlos III (ISCIII) Accion Estrategica en Salud, integrated in the Spanish National R+D+I Plan and financed by ISCIII Subdireccion General de Evaluacion and the Fondo Europeo de Desarrollo Regional (FEDER "Una manera de hacer Europa") grant PI17/01474 awarded to Merce Boada and grant PI19/00335 awarded to Marta Marquie; Spanish Ministry of Economy and Competitiveness (SAF201784283-R); Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED, CB06/05/0024); Portuguese Science and Technology Foundation (FCT) for the strategic fund (UIDB/04469/2020) and European Regional Development Funds.info:eu-repo/semantics/publishedVersio

    Extracellular vesicles, the emerging mirrors of brain physiopathology

    Get PDF
    Extracellular vesicles are secreted by a wide variety of cells, and their primary functions include intercellular communication, immune responses, human reproduction, and synaptic plasticity. Their molecular cargo reflects the physiological processes that their cells of origin are undergoing. Thus, many studies have suggested that extracellular vesicles could be a promising biomarker tool for many diseases, mainly due to their biological relevance and easy accessibility to a broad range of body fluids. Moreover, since their biological composition leads them to cross the blood-brain barrier bidirectionally, growing evidence points to extracellular vesicles as emerging mirrors of brain diseases processes. In this regard, this review explores the biogenesis and biological functions of extracellular vesicles, their role in different physiological and pathological processes, their potential in clinical practice, and the recent outstanding studies about the role of exosomes in major human brain diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or brain tumors.A. Cano acknowledges the support of the Instituto de Salud Carlos III (ISCIII) under the grant Sara Borrell (CD22/00125) and Ministerio de Ciencia e Innovación, Proyectos de Generación de Conocimiento grant PID2021-122473OA-I00. Authors acknowledge the services of ProofreadingServices.com for English correction. Authors acknowledge the support of the Ministerio de Ciencia e Innovación, Proyectos de Generación de Conocimiento grants PID2019-106625RB-I00 and PID2021-123462OB-I00. ISCIII Acción Estratégica en Salud, integrated in the Spanish National R+D+I Plan and financed by ISCIII Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER “Una manera de hacer Europa") grant PI17/01474, PI19/00335, PI22/01403 and PI22/00258. The support of CIBERNED (ISCIII) under the grants CB06/05/2004 and CB18/05/00010. The support from PREADAPT project. Joint Program for Neurodegenerative Diseases (JPND) grant Nº AC19/00097, from HARPONE Project, Agency for Innovation and Entrepreneurship (VLAIO) grant Nº PR067/21, and from DESCARTES project, German Research Foundation (DFG). The support of Fundación bancaria “La Caixa” and Grífols SA (GR@ACE project).Peer reviewe

    Plasma extracellular vesicles reveal early molecular differences in amyloid positive patients with early-onset mild cognitive impairment

    Get PDF
    In the clinical course of Alzheimer's disease (AD) development, the dementia phase is commonly preceded by a prodromal AD phase, which is mainly characterized by reaching the highest levels of Aβ and p-tau-mediated neuronal injury and a mild cognitive impairment (MCI) clinical status. Because of that, most AD cases are diagnosed when neuronal damage is already established and irreversible. Therefore, a differential diagnosis of MCI causes in these prodromal stages is one of the greatest challenges for clinicians. Blood biomarkers are emerging as desirable tools for pre-screening purposes, but the current results are still being analyzed and much more data is needed to be implemented in clinical practice. Because of that, plasma extracellular vesicles (pEVs) are gaining popularity as a new source of biomarkers for the early stages of AD development. To identify an exosome proteomics signature linked to prodromal AD, we performed a cross-sectional study in a cohort of early-onset MCI (EOMCI) patients in which 184 biomarkers were measured in pEVs, cerebrospinal fluid (CSF), and plasma samples using multiplex PEA technology of Olink© proteomics. The obtained results showed that proteins measured in pEVs from EOMCI patients with established amyloidosis correlated with CSF p-tau181 levels, brain ventricle volume changes, brain hyperintensities, and MMSE scores. In addition, the correlations of pEVs proteins with different parameters distinguished between EOMCI Aβ( +) and Aβ(-) patients, whereas the CSF or plasma proteome did not. In conclusion, our findings suggest that pEVs may be able to provide information regarding the initial amyloidotic changes of AD. Circulating exosomes may acquire a pathological protein signature of AD before raw plasma, becoming potential biomarkers for identifying subjects at the earliest stages of AD development

    Physiological and behavioural consequences of long-term moderate treadmill exercise

    Get PDF
    The benefits of long-term moderate exercise for health are widely accepted in humans, but few animal studies have been undertaken to characterize the effects of such activity on emotionality and responsiveness to stress. The present study describes the effects of long-term moderate forced treadmill training (36 weeks) on exploratory activity, anxiety-like behaviour, and the resting or stress levels of some physiological variables, including pituitary-adrenal (PA) hormones. Five-week-old male Sprague-Dawley rats were trained on the treadmill (TM) for 36 weeks, using a more moderate training (12. m/min, 30. min/day, 4-5 days/week) than that currently used in the literature. Two groups were used as controls: a non-handled sedentary (SED) group, receiving no manipulation, and a control (CON) group exposed to a stationary treadmill for the same amount of time as the TM group. In accordance with literature data, TM rats showed lower resting levels of glucose, triglycerides and cholesterol than the other two groups. The TM and CON groups both showed higher ambulation than the SED group in some behavioural tests, without evidence for altered anxiety. Resting levels of adrenocorticotropin (ACTH) and corticosterone did not differ among the groups, but a reduced ACTH response to both a novel environment (mild stressor) and an active escape-avoidance task (severe stressor) was observed in TM rats, whereas changes in corticosterone were modest. The results support the view that the physiological consequences of long-term moderate training are beneficial, including reduced PA responsiveness to stress, even though exercise training did not affect anxiety-like behaviour. © 2012 Elsevier Ltd

    Memòria Digital UPC: Un recorrido por la memoria visual de la Universidad

    Get PDF
    Presentació per a XVIII Workshop REBIUN de Proyectos Digitales y VIII Jornadas de OS Repositorios realitzades el 25-27 de setembre del 2019En 2017 y como horizonte el 50º aniversario de la Universitat Politècnica de Catalunya a celebrar en 2020, el Servei de Biblioteques, Publicacions i Arxius (SBPA), impulsó un proyecto de tratamiento del fondo fotográfico considerado de interés para iniciar la recuperación de la memoria visual de la Universidad. Este proyecto, en explotación desde mayo del 2019 lleva el nombre de “Memòria Digital UPC”. Los objetivos de “Memòria Digital UPC” fueron: Identificar, organizar, describir, digitalizar y difundir, en acceso abierto, el patrimonio fotográfico de la UPC, mostrar la historia de la UPC a lo largo de los 50 años a través de imágenes, la creación de exposiciones virtuales que muestren la actividad académica, cultural y social de la Universidad y finalmente la creación de comunidad como proyecto abierto a la participación de cualquier persona de la UPC
    corecore