271 research outputs found

    Cribriform-morular variant of thyroid carcinoma

    Get PDF
    It is very rewarding for endocrine pathologists to see, in the new book of the World Health Organization (WHO) classification of endocrine organs 1, how the molecular characterization of hyroid tumours has confirmed the types and subtypes of tumours previously recognized by less sophisticated techniques.Supported by Grant PI15/01501-FEDER from the Insti-tuto de Salud Carlos III, Ministry of Science, Innova-tion and Universities, SpainS

    Follicular thyroid carcinoma with an unusual glomeruloid pattern of growth.

    Get PDF
    We describe an uncommon thyroid tumor in a 56-year-old woman. The widely infiltrating, angioinvasive neoplasm, 5 cm in diameter, exhibited a peculiar architectural growth pattern characterized by follicles with round to oval epithelial tufts growing within, often supported by a fibrovascular core mimicking the renal glomerulus. Colloid-empty follicles, tubular or elongated, were lined by pseudostratified tall, columnar cells with clear cytoplasm. Nuclei were round to oval, with evenly distributed, slightly coarse chromatin. Tumor cells were positive for thyroid transcription factor-1, thyroperoxidase, thyroglobulin, cytokeratin 18, Hector Battifora mesothelial cell, and vimentin. Scattered cells positive for S100, Wilms tumor 1 (WT1), and cytokeratins AE1/AE3 were found, with no reaction detected for cytokeratins 34betaE12, 5/6, 7, 19, or 20. There were PAX8-PPARgamma rearrangement and N-RAS mutation. No mutations were found for APC or BRAF genes, nor were RET/PTC rearrangements detected. Because of the distinctive histologic features, we propose naming this tumor follicular thyroid carcinoma with an unusual glomeruloid pattern of growth

    Rapid evolution and biogeographic spread in a colorectal cancer

    Get PDF
    How and when tumoral clones start spreading to surrounding and distant tissues is currently unclear. Here we leveraged a model-based evolutionary framework to investigate the demographic and biogeographic history of a colorectal cancer. Our analyses strongly support an early monoclonal metastatic colonization, followed by a rapid population expansion at both primary and secondary sites. Moreover, we infer a hematogenous metastatic spread under positive selection, plus the return of some tumoral cells from the liver back to the colon lymph nodes. This study illustrates how sophisticated techniques typical of organismal evolution can provide a detailed, quantitative picture of the complex tumoral dynamics over time and space.This work was supported by the European Research Council (ERC-617457- PHYLOCANCER awarded to D.P.) and by the Spanish Ministry of Economy and Competitiveness—MINECO (BFU2015-63774-P awarded to D.P.). D.P. receives further support from Xunta de Galicia. J.M.A. is currently supported by an AXA Research Fund Postdoctoral Fellowship. J.M.C.-T. is supported by Grant PI15/01501-FEDER from the Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, SpainS

    Inmunohistochemical Profile of Solid Cell Nest of Thyroid Gland

    Get PDF
    It is widely held that solid cell nests (SCN) of the thyroid are ultimobranchial body remnants. SCNs are composed of main cells and C cells. It has been suggested that main cells might be pluripotent cells contributing to the histogenesis of C cells and follicular cells, as well as to the formation of certain thyroid tumors. The present study sought to analyze the immunohistochemical profile of SCN and to investigate the potential stem cell role of SCN main cells. Tissue sections from ten cases of nodular hyperplasia (non-tumor goiter) with SCNs were retrieved from the files of the Hospital Infanta Luisa (Seville, Spain). Parathormone (PTH), calcitonin (CT), thyroglobulin (TG), thyroid transcription factor (TTF-1), galectin 3 (GAL3), cytokeratin 19 (CK 19), p63, bcl-2, OCT4, and SALL4 expression were evaluated by immunohistochemistry. Patient clinical data were collected, and tissue sections were stained with hematoxylin–eosin for histological examination. Most cells stained negative for PTH, CT, TG, and TTF-1. Some cells staining positive for TTF-1 and CT required discussion. However, bcl-2, p63, GAL3, and CK 19 protein expression was detected in main cells. OCT4 protein expression was detected in only two cases, and SALL4 expression in none. Positive staining for bcl-2 and p63, and negative staining for PTH, CT, and TG in SCN main cells are both consistent with the widely accepted minimalist definition of stem cells, thus supporting the hypothesis that they may play a stem cell role in the thyroid gland, although further research will be required into stem cell markers. Furthermore, p63 and GAL-3 staining provides a much more sensitive means of detecting SCNs than staining for carcinoembryonic antigen, calcitonin, or other markers; this may help to distinguish SCNs from their mimics

    Rapid evolution and biogeographic spread in a colorectal cancer

    Get PDF
    How and when tumoral clones start spreading to surrounding and distant tissues is currently unclear. Here we leveraged a model-based evolutionary framework to investigate the demographic and biogeographic history of a colorectal cancer. Our analyses strongly support an early monoclonal metastatic colonization, followed by a rapid population expansion at both primary and secondary sites. Moreover, we infer a hematogenous metastatic spread under positive selection, plus the return of some tumoral cells from the liver back to the colon lymph nodes. This study illustrates how sophisticated techniques typical of organismal evolution can provide a detailed, quantitative picture of the complex tumoral dynamics over time and spaceEuropean Research Council | Ref. ERC-617457- PHYLOCANCERMinisterio de EconomĂ­a y Competitividad | Ref. BFU2015-63774-PInstituto de Salud Carlos III | Ref. PI15/01501-FEDE

    Cystic tumor of the atrioventricular node of the heart appears to be the heart equivalent of the solid cell nests (ultimobranchial rests) of the thyroid

    Get PDF
    We studied a series of 10 solid cell nests (SCNs) of the thyroid and a case of cystic tumor of the atrioventricular node (CTAVN) of the heart and reviewed the literature. The CTAVN and SCNs appeared as cystic and/or solid (squamoid) structures mainly composed of polygonal or oval cells (main cells) admixed with occasional clear cells (neuroendocrine and C cells). Main cells were immunoreactive for simple and stratified epithelial-type cytokeratins, epithelial membrane antigen, carcinoembryonic antigen, carbohydrate antigen 19.9, p63, bcl-2, and galectin-3. Neuroendocrine (and C) cells were positive for simple-type cytokeratins, carcinoembryonic antigen, calcitonin, chromogranin, synaptophysin, and thyroid transcription factor-1. Our data support the hypothesis that the CTAVN of the heart and the SCNs of the thyroid are identical structures that represent the same lesional process. The assumption that CTAVN is a ultimobranchial heterotopia fits with the known role of cardiac neural crest cells in cardiovascular development

    A Novel Nanoproteomic Approach for the Identification of Molecular Targets Associated with Thyroid Tumors

    Get PDF
    A thyroid nodule is the most common presentation of thyroid cancer; thus, it is extremely important to differentiate benign from malignant nodules. Within malignant lesions, classification of a thyroid tumor is the primary step in the assessment of the prognosis and selection of treatment. Currently, fine-needle aspiration biopsy (FNAB) is the preoperative test most commonly used for the initial thyroid nodule diagnosis. However, due to some limitations of FNAB, different high-throughput “omics” approaches have emerged that could further support diagnosis based on histopathological patterns. In the present work, formalin-fixed paraffin-embedded (FFPE) tissue specimens from normal (non-neoplastic) thyroid (normal controls (NCs)), benign tumors (follicular thyroid adenomas (FTAs)), and some common types of well-differentiated thyroid carcinoma (follicular thyroid carcinomas (FTCs), conventional or classical papillary thyroid carcinomas (CV-PTCs), and the follicular variant of papillary thyroid carcinomas (FV-PTCs)) were analyzed. For the first time, FFPE thyroid samples were deparaffinized using an easy, fast, and non-toxic method. Protein extracts from thyroid tissue samples were analyzed using a nanoparticle-assisted proteomics approach combined with shotgun LC-MS/MS. The differentially regulated proteins found to be specific for the FTA, FTC, CV-PTC, and FV-PTC subtypes were analyzed with the bioinformatic tools STRING and PANTHER showing a profile of proteins implicated in the thyroid cancer metabolic reprogramming, cancer progression, and metastasis. These proteins represent a new source of potential molecular targets related to thyroid tumorsThis work was supported by grants from the Instituto de Salud Carlos III (ISCIII), State Research Agency (AEI), and Ministry of Science and Innovation (Spain), with the participation of European FEDER funds, to C.N. (CP16/00139) and J.M.C.-T. (PI19/01316)S

    A Novel Loss-of-Function Mutation (N48K) in the PTEN Gene in a Spanish Patient with Cowden Disease

    Get PDF
    Cowden disease, also known as multiple hamartoma syndrome, is a rare disease inherited in an autosomal dominant pattern, which confers a high risk of developing breast and thyroid carcinomas. Mutations in PTEN, a tumor suppressor gene located on chromosome 10q23, have been identified in patients with Cowden disease. In this work, the direct sequencing of all coding regions of the PTEN gene led us to the identification of N48K, a new germline PTEN missense mutation, in a patient suffering from Cowden disease. The genetic analysis of 200 chromosomes from healthy individuals revealed that the variant was not common in our population. Moreover, by functional analysis we found that the ability of PTEN N48K mutant protein to inhibit the activation of the proto-oncogene PKB/Akt was impaired, supporting the involvement of N48K mutation in Cowden disease. Loss of heterozygosity using three microsatellites (D10S215, D10S541, and D10S564) and the complete sequence analysis of PTEN exons in breast and endometrial tumor samples from the same patient were also carried out in an attempt to identify additional PTEN somatic mutations. The lack of loss of heterozygosity or additional mutations in tumor samples suggests that abnormalities of the regulatory regions of the PTEN gene or haplo-insufficiency might occur in tumors from Cowden disease patients

    mTOR pathway overactivation in BRAF mutated papillary thyroid carcinoma

    Get PDF
    CONTEXT: There are several genetic and molecular evidences suggesting dysregulation of the mammalian target of rapamycin (mTOR) pathway in thyroid neoplasia. Activation of the phosphatidylinositol-3-kinase/AKT pathway by RET/PTC and mutant RAS has already been demonstrated, but no data have been reported for the BRAF(V600E) mutation. OBJECTIVE: The aim of this study was to evaluate the activation pattern of the mTOR pathway in malignant thyroid lesions and whether it may be correlated with known genetic alterations, as well as to explore the mechanisms underlying mTOR pathway activation in these neoplasias. RESULTS: We observed, by immunohistochemical evaluation, an up-regulation/activation of the mTOR pathway proteins in thyroid cancer, particularly in conventional papillary thyroid carcinoma (cPTC). Overactivation of the mTOR signaling was particularly evident in cPTC samples harboring the BRAF(V600E) mutation. Transfection assays with BRAF expression vectors as well as BRAF knockdown by small interfering RNA revealed a positive association between BRAF expression and mTOR pathway activation, which appears to be mediated by pLKB1 Ser428, and emerged as a possible mechanism contributing to the association between BRAF mutation and mTOR pathway up-regulation. When we evaluated the rapamycin in the growth of thyroid cancer cell lines, we detected that cell lines with activating mutations in the MAPK pathway show a higher sensitivity to this drug. CONCLUSIONS: We determined that the AKT/mTOR pathway is particularly overactivated in human cPTC harboring the BRAF(V600E) mutation. Moreover, our results suggest that the mTOR pathway could be a good target to enhance therapy effects in certain types of thyroid carcinoma, namely in those harboring the BRAF(V600E) mutation
    • 

    corecore