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Rapid evolution and biogeographic spread
in a colorectal cancer
Joao M. Alves 1,2,3, Sonia Prado-López 1,2,3, José Manuel Cameselle-Teijeiro 4,5 & David Posada 1,2,3*

How and when tumoral clones start spreading to surrounding and distant tissues is currently

unclear. Here we leveraged a model-based evolutionary framework to investigate the

demographic and biogeographic history of a colorectal cancer. Our analyses strongly support

an early monoclonal metastatic colonization, followed by a rapid population expansion at

both primary and secondary sites. Moreover, we infer a hematogenous metastatic spread

under positive selection, plus the return of some tumoral cells from the liver back to the colon

lymph nodes. This study illustrates how sophisticated techniques typical of organismal

evolution can provide a detailed, quantitative picture of the complex tumoral dynamics over

time and space.
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Cancer has long been recognized as a somatic evolutionary
process mainly driven by continuous Darwinian natural
selection, in which cells compete for space and resources1.

With the increasing availability of high-throughput genomic data,
several studies have started to explore the evolutionary relation-
ships of tumor clones in order to identify the key molecular
changes driving cancer progression2, to better understand the
subclonal architecture of tumors3,4, and to determine the origins
of metastases5. While sophisticated inferential methods have been
put forward that make use of sequencing data to investigate the
timing and the patterns of geographical dispersal of organismal
lineages6,7, their application in cancer research has only recently
started8,9.

In metastatic colorectal cancer (mCRC) many aspects under-
lying the dissemination of cancer cells to tissues beyond primary
lesions have been difficult to determine. Although earlier models
of mCRC progression have proposed a sequential metastatic
cascade, with cells from the primary tumor first escaping to local
lymph nodes from where they seed distant tissues10, conflicting
evidence has recently emerged, as some genomic datasets seem to
favor an independent origin of distant and lymph node metas-
tases5. Here, to better understand the tempo and mode of
diversification of the tumoral cells within the human body, we
analyze multiregional sequencing data from a single patient with
mCRC under a powerful Bayesian framework, typical of orga-
nismal phylogenetics, phylodynamics, and biogeography. We are
able to identify a rapid and early metastatic spread and multiple
migration events, where both primary tumor and metastases
diversify in parallel. Our results provide an unusually detailed
picture of the complex evolution of tumor cell populations within
a single individual, identifying tumor demographics and coloni-
zation patterns within a defined timeframe.

Results
Spatial distribution of intratumor genomic heterogeneity. We
obtained whole-exome sequencing data from 18 different loca-
tions of a microsatellite-stable mCRC (Fig. 1a). After filtering out
germline polymorphisms and single-nucleotide variants (SNVs)
in non-diploid regions, we detected 475 somatic SNVs with high
confidence (Supplementary Data 1). A principal component
analysis (PCA) of their allele frequencies showed a clear dis-
tinction between primary tumor and metastatic samples (Fig. 1b).
Concordantly, we found a significant correlation between genetic
and physical distances among these two groups, but not within
(Supplementary Fig. 1). We identified several clonal alterations in
known CRC drivers11, including two copy neutral loss of het-
erozygosity events in APC and TP53, plus a non-synonymous
mutation in KRAS (Fig. 1c, d). Moreover, we also observed a
clonal non-synonymous mutation in MSLN, a plasma membrane
differentiation antigen which is emerging as an attractive target
for cancer immunotherapy due to its potential involvement in the
epithelial-to-mesenchymal transition, a cellular process thought
to be required for metastatic dissemination12.

Tempo and demographics of metastatic dissemination. We
obtained a Bayesian estimate of the phylogeny, under a relaxed
clock model with exponential growth, of the 21 tumor clones
identified with CloneFinder13 (Fig. 2a). All the metastatic lineages
grouped together with high support, suggesting a monoclonal
origin. The age of the tumor was estimated to be 6.94–6.45 years
(95% Highest Posterior Density (HPD): 9.98/9.16–4.43/4.36)
prior to clinical diagnosis (PCD). Also, the results imply an early
origin of the metastatic ancestor, 4.20 years PCD (95% HPD:
6.30–2.46) (Supplementary Fig. 2), diverging within a short per-
iod of evolutionary time (posterior median divergence time=

2.58 years) from the ancestor of the tumor sample (tMRCA)
(Fig. 2b). Despite the lack of a significant overall departure from
neutrality across branches, evidence of positive selection (i.e.,
ratio of substitution rates at non-synonymous and synonymous
sites (dN/dS) > 1) was found for four specific branches in the
phylogeny, including the ancestral lineage that gave rise to all the
metastatic clones, pointing out changes potentially relevant for
the acquisition of metastatic capabilities (Fig. 2a). The most
notable mutation in this branch was a non-synonymous mutation
in ANGPT4, an angiogenic gene known to promote cancer pro-
gression in multiple cancer types14,15.

Furthermore, the Bayesian skyline plot (Fig. 2c) suggests that
the tumor underwent a very rapid demographic expansion
coincident with the diversification of both primary tumor and
metastatic clades, before eventually becoming stationary. Inter-
estingly, the expansion of the metastatic clade seems to slightly
precede the one associated with the primary tumor. The posterior
median estimate of the population growth rate per generation was
0.014 (95% HPD: 0.006–0.03), implying an average population
doubling time of 193 days.

Biogeographic history of cancer progression. The colonization
history of this tumor appears to have been quite complex. A
dispersal-extinction biogeographic analysis placed the origin of
sampled lineages around the geographical center of the primary
tumor (Fig. 3a), subsequently radiating outwards in multiple
directions. Additionally, we inferred with high confidence that the
ancestral metastatic clone experienced an early long-distance
dispersal to the liver (Fig. 3b), followed by a proliferation towards
the nearby hepatic lymph nodes before eventually spreading back
to the colonic lymph nodes. The number of implied migrations
and movements was surprisingly high (Fig. 3c). Importantly, a
distance-dependent model was heavily favored over a distance-
independent model (Fig. 3d), suggesting an overall negative
correlation between geographical distance and dispersal ability of
the tumoral clones at the whole-patient level.

Discussion
Collectively, our analysis provide a detailed picture of the evo-
lutionary history of this tumor. While we are not the first ones
applying Bayesian phylogenetics for cancer dating8,9,16,17, pre-
vious attempts used sample trees and absence/presence muta-
tional profiles instead of clonal phylogenies and clonal sequences,
and therefore are subject to potential biases18,19. Besides, the
evolutionary framework presented here has several advantages
over previous approaches. For example, it is based on Bayesian
estimates obtained only after contrasting competing evolutionary
and demographic models under a rigorous model selection fra-
mework. Also, our biogeographic approach allows for the pre-
sence of the same ancestral clone at more than one location, and
is able to consider the spatial distance among samples, unlike the
approach of El-Kebir et al.19. On the other hand, our analyses
imply a series of assumptions. In particular, it presumes that the
clonal genotypes were appropriately reconstructed. Indeed, clonal
deconvolution remains a very hard problem13, and we cannot
rule out some degree of uncertainty in the precise combination of
mutations assigned to any given clone. Nevertheless, we were
reassured to some extent by the fact that comparable clonal
genotypes were obtained when using a different deconvolution
approach20 (Supplementary Fig. 3). In addition, in our analyses
we used a mutation rate, 4.6E-10, experimentally derived from
hundreds of CRCs16. However, it has been recently proposed that
mutation rates in mCRC may be higher and could also vary
among patients by an order of magnitude (i.e., 10E-9–10E-8)17.
Higher mutation rates would essentially imply faster evolution
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and shorter absolute divergence times. Nevertheless, it should be
highlighted that regardless of the mutation rate prior used, the
relative divergence time of the metastatic ancestor is not affected,
indicating that an early divergence between mMRCA and tMRCA
should still be supported. Moreover, our biogeographic model
assumes that the geographical distances among samples more or
less reflect the true migration likelihood of the tumoral clones.
While we cannot prove that the distances used are realistic in this
regard, different sets of distances resulted in similar biogeo-
graphic solutions (Supplementary Note 1, Supplementary Fig. 4).

Importantly, early metastases, such as the one described here,
have already been proposed in mCRC8,9,16,17. Although Leung
et al.21 recently inferred a late-dissemination model in mCRC,
they failed to provide quantitative measurements, and their
timing of metastatic dissemination was simply determined by
visual inspection of mutational trees, making their results difficult
to interpret and compare with. Reinforcing the idea of an early
cell dissemination, our results suggest a fairly rapid population
increase during the parallel phylogenetic diversification of the
metastatic and primary tumor clades. Although these analyses
revealed a similar individual contribution of each clade to the
overall variation in effective population size, the observed
demographic trends are compatible with an early geographical
expansion, and subsequent establishment of the metastatic
lineages into new anatomical sites, together with the expansion of
primary tumor populations to nearby areas.

Our biogeographic reconstruction revealed a pattern of meta-
static dissemination in which the primary tumor directly seeded
liver metastases without an apparent early involvement of the

lymphatic system. Previous studies have argued that metastatic
spread in mCRC can potentially occur via the hepatic portal vein
—a direct blood supply between the colon and the liver5,22. On
this basis, metastatic dissemination in this patient seems to have
started hematogenously, with a single episode of long-range dis-
persal across the hepatic portal vein into the liver, followed by a
sequence of short-range migration episodes to nearby anatomical
areas before eventually spreading to the colonic lymph nodes.
While the latter colonization has not yet been described in mCRC
patients, it might represent some type of self-seeding mechanism,
as previously observed in mCRC in mice23. Interestingly, we
observed a similar migration pattern, albeit less detailed, at the
organ level using MACHINA19 (Supplementary Note 2, Supple-
mentary Fig. 5). In this case, all migration solutions suggested a
single spread from the primary tumor towards the liver, followed
by multiple migration events to the hepatic and colonic lymph
nodes. Moreover, the MACHINA history with the smallest
number of migration events also implied a parallel seeding of
hepatic and colonic lymph node metastases from the liver.

In conclusion, we believe that our study demonstrates the
utility of a sound evolutionary framework for exploring the
spatio-temporal dynamics of cancer cell populations from mul-
tiregional sequencing data. By integrating concepts from popu-
lation genetics, phylogenetics, and biogeography, we were able to
resolve the spatial architecture of this cancer, connect phyloge-
netic events at time scales compatible with clinical observations,
and recover past demographic changes shaping the spatial dis-
tribution of malignant clones. As more data continue to accu-
mulate, future studies could extend these type of evolutionary
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analyses to other patients and cancer types, including polyclonal
metastatic tumors5, in order to obtain a more comprehensive and
meaningful understanding of the cancer spread, which could
ultimately be used to predict clinical outcomes and guide targeted
treatments24.

Methods
Sample collection. A 51-year-old man was admitted to hospital and died shortly
afterwards. The pathological assessment revealed a low-grade, moderately differ-
entiated, adenocarcinoma of the descending colon, with multiple metastatic lymph
nodes, liver metastases, a metastatic focus in the right diaphragmatic peritoneum,
and multiple intravascular micrometastases in both lungs (pT4aN2bM1c)25.
Immunohistochemical staining for four mismatch repair proteins (MLH1, MSH2,
MSH6, and PMS2) confirmed that this tumor was microsatellite stable. During the
warm autopsy, performed by J.M.C.-T., a total of 18 samples were collected,
including 8 from the primary tumor (C1–C8), 2 from colonic lymph node
metastases (CL1, CL2), 2 from hepatic lymph node metastases (HL1, HL2), 4 from
liver metastases (L1–L4), and 2 healthy samples from the colon (N1, N2) (Fig. 1a).
All samples included in this study were provided by the Biobank of I.D.I.S.-C.H.U.
S. (PT13/0010/0068), integrated in the Spanish National Biobank Network, and
processed following standard operating procedures with the appropriate approval
of the Ethical and Scientific Committees (CAEI Galicia 2014/015). Written
informed consent was provided by the patient’s family.

Tumor disaggregation and sorting. Tumor samples and normal CRC tissues were
frozen in liquid nitrogen, placed in dry ice, and transported to the laboratory. Next,
samples were minced into pieces of 1 mm3 with a scalpel and digested by incu-
bation in Accutase (LINUS) for 1 h at 37 °C. Thereafter, the cell suspension was

filtered with a 70 μm cell strainer (FALCON). The cell pellets were washed twice
and suspended in ice-cold phosphate-buffered saline (PBS) and then stained for
30 min with the Anti-EpCAM (EBA1) antibody (BD). Following three successive
washes in PBS buffer, flow cytometry analyses, and sorting of EpCAM-positive cells
were performed with a FACSARIA III (BD Biosciences). Then, DRAQ5 and 7AAD
dyes were added in order to select nucleated cells and exclude non-viable ones
(Supplementary Fig. 6).

DNA extraction and exome sequencing. The DNA was extracted from the
18 samples using the QIAamp DNA Mini kit (QIAGEN), and whole-exome
sequencing was carried out at 60× with the Ion Torrent PGM platform at the
Fundación Pública Galega de Medicina Xenómica (FPGMX) at Santiago de
Compostela, Spain.

Detection of somatic variants. Sequencing reads were aligned to the Genome
Reference Consortium Human Build 37 (GRCh37) using the Torrent Mapping
Alignment Program 5.0.7 (TMAP). After alignment, SNVs were called indepen-
dently for all tumor and normal samples using a standalone version of the Torrent
Variant Caller 5.6.0 (TVC). Following a similar approach to de Leng et al.26, a set of
high-stringency thresholds were used to retain high confidence bi-allelic calls,
including a minimum coverage of 20× for both tumor and healthy samples, a
minimum variant allele frequency (VAF) of 0.05, and a minimum nucleotide
(Phred) quality score of 20. Given this rather stringent filtering strategy, sequencing
errors are expected to be negligible. Germline polymorphisms were filtered by
excluding variants present in the healthy samples. Copy-number profiles, as well as
tumor purity estimates and global ploidy status, were obtained using the Sequenza
toolkit27 under default settings (binning window of 1 Mb).
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Population structure. To test the existence of population genetic structure in
anatomical space, we assessed the correlation between genetic (measured via FST
estimates) and geographical distance, using the Mantel test function in the ade-
genet R package28 (Supplementary Fig. 1).

Deconvolution of clonal populations. Since the accuracy of the clonal deconvo-
lution from mixed samples largely depends on the quality of the inferred VAFs,
and copy-number variation is known to alter the allele frequency of somatic
mutations in bulk tumor samples, somatic calls showing a VAF < 0.10, with a read
depth <20 in all tumor and healthy samples, and/or overlapping with copy-number
events were filtered out prior to clonal deconvolution. The number of tumor
clones, as well as their genotype sequences, was then inferred using CloneFinder13,
which has been previously shown to outperform other methods in both simulated
and empirical datasets. We required a minimum read count of 40 and a mutant
read count of 6. The clone frequency cutoff was set to 0.075. The binary clonal
sequences generated (i.e., A= reference status; T= alternative alleles) were then
modified by changing the binary alleles into the corresponding nucleotide state.
The consistency of the clonal genotypes inferred was evaluated by applying a
different clonal deconvolution method, LICHeE20, to the same dataset. LICHeE
was run using the following thresholds: minVAFPresent= 0.075, maxVAFValid=

0.7, maxVAFAbsent= 0, minClusterSize= 2, minPrivateClusterSize= 1, max-
ClusterDist= 0.1, outputTrees= 1 (Supplementary Fig. 3).

Phylogenetic model fitting, reconstruction, and dating. Bayesian phylogenetic
analyses were performed using BEAST 2.4.7 (ref. 29). First, the most appropriate
evolutionary model (i.e., demographics and substitution rates) for our data was
identified using Bayes factors30. A detailed description of the models tested can be
found in Supplementary Table 1. For each candidate model, marginal likelihoods
were obtained through a path-sampling analysis implemented in BEAST, using 100
independent Markov Chain Monte Carlo (MCMC) chains with 500,000 steps each.
As a prior for the relaxed clock rate mean, a value of 4.6E-10 substitutions per site
per generation derived experimentally for CRC16 was used. For conversion to real
time, a generation time of 4 days was assumed16,31. Moreover, since the clonal
genotypes obtained only comprise variable genomic positions, an SNV ascertain-
ment bias correction32 was applied by modifying the “constantSiteWeights”
attribute in the input XML file for BEAST. Posterior distributions under the model
with highest support (i.e., Clock Model: Relaxed clock exponential; Tree: Coales-
cent Exponential Population) for the parameters of interest were obtained by
running an MCMC chain during 100 million generations, sampled every 2000.
Convergence was assessed using Tracer v1.6 (ref. 33). After discarding the first 10%
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of the samples as burn-in, point estimates for the different parameters were
obtained using posterior means, and a maximum clade credibility topology was
constructed using the median heights.

Demographic analysis. Demographic changes in the cancer cell population were
inferred from a Bayesian skyline plot analysis carried out in BEAST 2.4.7. The same
prior distributions described above were used, with the exception of the coalescent
tree prior, which was set to “Coalescent Bayesian skyline”. The final skyline
reconstruction was obtained using Tracer v1.6, setting the number of bins to 100
and the age of the youngest tip to 0 (i.e., the time of collection looking backwards).

Estimation of positive selection. Somatic mutations were mapped on the BEAST
tree using PAUP*34 under maximum likelihood. Coding clonal sequences were
obtained using the dndscv35 R package, concatenated into a multiple sequence
alignment, and analyzed using PAML 4.8a36 to obtain maximum likelihood esti-
mates of the non-synonymous/synonymous rate ratio (dN/dS) for the different
branches of the inferred clonal genealogy in BEAST. The significance of these
estimates was tested using likelihood ratio tests comparing a model assuming a
single dN/dS for the whole genealogy (model M0) and models assuming that a
specific branch has a different dN/dS than the rest (two-ratio model)37.

Inference of ancestral clonal ranges and migration history. The ancestral spatial
distribution of the clones was reconstructed using BayArea6 upon the inferred
BEAST genealogy, together with the observed geographic ranges of the tumor
clones (i.e., presence/absence of each clone at each of the 16 sampled locations of
the tumor) (Supplementary Fig. 4). Posterior distributions for the parameters of
interest were obtained by running an MCMC chain during 100 million steps,
sampling every 2000 generations. BayArea implements a probabilistic dispersal-
extinction biogeographic model that considers how different lineages colonize new
regions or disappear from them through time. To examine whether two-
dimensional geographical distances played a role in the dispersal ability of tumor
clones, two candidate biogeographic models were compared in BayArea using
Bayes factors (computed with the Savage-Dickey density ratio method): the
mutual-independence (null) model, in which clonal dispersal is not conditioned by
spatial distance (i.e., distance power parameter, β= 0), versus a distance-dependent
dispersal model, where the probability of dispersal is affected by spatial distance
(i.e., β > 0: dispersal to nearby areas is more likely than to distant locations, or β < 0:
long-distance dispersal events are favored over short-distance movements). In
order to define the spatial distances, different 2D coordinate matrices describing
the geographical location of the samples were explored (Supplementary Fig. 4).
MACHINA19 was run in parsimonious migration history mode (i.e., pmh_sankoff)
using the inferred clonal genealogy from BEAST and setting the colon as the
primary anatomical site (Supplementary Fig. 5).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw exome sequencing data have been deposited in the Sequence Read Archive database
under the accession code PRJNA552658. All data supporting the findings of this study
are available within the article and its supplementary information files. A reporting
summary for this article is available as a Supplementary Information file.
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