3,027 research outputs found

    How Should Governments Address High Levels of Natural Radiation and Radon--Lessons from the Chernobyl Nuclear Accident and Ramsar, Iran

    Get PDF
    The authors discuss the high levels of natural background radiation in Ramsar, Iran, and offer data indicating that this has had little effect on the health of Ramsar\u27s inhabitants. The authors then examine the implications their research could have for public health policy

    X-ray Emission From Nearby M-dwarfs: the Super-saturation Phenomenon

    Get PDF
    A rotation rate and X-ray luminosity analysis is presented for rapidly rotating single and binary M-dwarf systems. X-ray luminosities for the majority of both single & binary M-dwarf systems with periods below ≃5−6\simeq 5-6 days (equatorial velocities, Veq>_{eq}> 6 km~s−1^{-1}) are consistent with the current rotation-activity paradigm, and appear to saturate at about 10−310^{-3} of the stellar bolometric luminosity. The single M-dwarf data show tentative evidence for the super-saturation phenomenon observed in some ultra-fast rotating (>> 100 km~s−1^{-1}) G & K-dwarfs in the IC 2391, IC 2602 and Alpha Persei clusters. The IC 2391 M star VXR60b is the least X-ray active and most rapidly rotating of the short period (Prot<_{rot}< 2 days) stars considered herein, with a period of 0.212 days and an X-ray activity level about 1.5 sigma below the mean X-ray emission level for most of the single M-dwarf sample. For this star, and possibly one other, we cautiously believe that we have identified the first evidence of super-saturation in M-dwarfs. If we are wrong, we demonstrate that only M-dwarfs rotating close to their break up velocities are likely to exhibit the super-saturation effect at X-ray wavelengths.Comment: 12 pages, 4 figures, accepted by MNRA

    Spin-orbit angles: A probe to evolution

    Get PDF
    We will present our campaign to estimate the projected spin-orbit angle for transiting hot Jupiters, obtained via observations of the Rossiter-McLaughlin effect. Combining our results to those of other teams we show what the current distribution in projected spin-orbit angle is, quickly reminding what interpretation we make of it. Finally we will show early results from a campaign that we initiated, surveying the Rossiter-McLaughlin effect on transiting SB1 intended to provide a comparison sample to the transiting planet's result

    Books Reviewed

    Get PDF

    Scaffolds for 3D in vitro culture of neural lineage cells.

    Get PDF
    Understanding how neurodegenerative disorders develop is not only a key challenge for researchers but also for the wider society, given the rapidly aging populations in developed countries. Advances in this field require new tools with which to recreate neural tissue in vitro and produce realistic disease models. This in turn requires robust and reliable systems for performing 3D in vitro culture of neural lineage cells. This review provides a state of the art update on three-dimensional culture systems for in vitro development of neural tissue, employing a wide range of scaffold types including hydrogels, solid porous polymers, fibrous materials and decellularised tissues as well as microfluidic devices and lab-on-a-chip systems. To provide some context with in vivo development of the central nervous system (CNS), we also provide a brief overview of the neural stem cell niche, neural development and neural differentiation in vitro. We conclude with a discussion of future directions for this exciting and important field of biomaterials research

    The GALEX Arecibo SDSS Survey. VIII. Final Data Release -- The Effect of Group Environment on the Gas Content of Massive Galaxies

    Full text link
    We present the final data release from the GALEX Arecibo SDSS Survey (GASS), a large Arecibo program that measured the HI properties for an unbiased sample of ~800 galaxies with stellar masses greater than 10^10 Msun and redshifts 0.025<z<0.05. This release includes new Arecibo observations for 250 galaxies. We use the full GASS sample to investigate environmental effects on the cold gas content of massive galaxies at fixed stellar mass. The environment is characterized in terms of dark matter halo mass, obtained by cross-matching our sample with the SDSS group catalog of Yang et al. Our analysis provides, for the first time, clear statistical evidence that massive galaxies located in halos with masses of 10^13-10^14 Msun have at least 0.4 dex less HI than objects in lower density environments. The process responsible for the suppression of gas in group galaxies most likely drives the observed quenching of the star formation in these systems. Our findings strongly support the importance of the group environment for galaxy evolution, and have profound implications for semi-analytic models of galaxy formation, which currently do not allow for stripping of the cold interstellar medium in galaxy groups.Comment: 36 pages, 16 figures. Accepted for publication in MNRAS. Version with supplementary material available at http://www.mpa-garching.mpg.de/GASS/pubs.php . GASS released data can be found at http://www.mpa-garching.mpg.de/GASS/data.ph

    The On/Off Nature of Star-Planet Interactions

    Full text link
    Evidence suggesting an observable magnetic interaction between a star and its hot Jupiter appears as a cyclic variation of stellar activity synchronized to the planet's orbit. In this study, we monitored the chromospheric activity of 7 stars with hot Jupiters using new high-resolution echelle spectra collected with ESPaDOnS over a few nights in 2005 and 2006 from the CFHT. We searched for variability in several stellar activity indicators (Ca II H, K, the Ca II infrared triplet, Halpha, and He I). HD 179949 has been observed almost every year since 2001. Synchronicity of the Ca II H & K emission with the orbit is clearly seen in four out of six epochs, while rotational modulation with P_rot=7 days is apparent in the other two seasons. We observe a similar phenomenon on upsilon And, which displays rotational modulation (P_rot=12 days) in September 2005, in 2002 and 2003 variations appear to correlate with the planet's orbital period. This on/off nature of star-planet interaction (SPI) in the two systems is likely a function of the changing stellar magnetic field structure throughout its activity cycle. Variability in the transiting system HD 189733 is likely associated with an active region rotating with the star, however, the flaring in excess of the rotational modulation may be associated with its hot Jupiter. As for HD 179949, the peak variability as measured by the mean absolute deviation for both HD 189733 and tau Boo leads the sub-planetary longitude by 70 degrees. The tentative correlation between this activity and the ratio of Mpsini to the planet's rotation period, a quantity proportional to the hot Jupiter's magnetic moment, first presented in Shkolnik et al. 2005 remains viable. This work furthers the characterization of SPI, improving its potential as a probe of extrasolar planetary magnetic fields.Comment: Accepted for publication in the Astrophysical Journa
    • …
    corecore