
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Original citation: 
Murphy, Ashley R., Laslett, Andrew, O'Brien, Carmel M. and Cameron, Neil R. (2017) 
Scaffolds for 3D in vitro culture of neural lineage cells. Acta Biomaterialia, 54. pp. 1-20. 
 
Permanent WRAP URL: 
http://wrap.warwick.ac.uk/88912  
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge.  Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
© 2017, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ 
 

A note on versions: 
The version presented here may differ from the published version or, version of record, if 
you wish to cite this item you are advised to consult the publisher’s version.  Please see the 
‘permanent WRAP URL’ above for details on accessing the published version and note that 
access may require a subscription. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/82968668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/88912
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk


 1 

Scaffolds for 3D In Vitro Culture of Neural Lineage Cells 

Ashley R. Murphya, Andrew Laslettb,c, Carmel M. O’Brienb,c, Neil R. Camerona * 

a Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, 

Clayton, VIC 3800, Australia. 

b CSIRO Manufacturing, Bag 10, Clayton South MDC, VIC 3168, Australia. 

c Australian Regenerative Medicine Institute, Science, Technology, Research and Innovation 

Precinct (STRIP), Monash University, Clayton Campus, Wellington Road, Clayton, VIC 3800, 

Australia 

 

Corresponding author: Prof Neil R. Cameron, Department of Materials Science and 

Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia. T: +61 3 

99020774; neil.cameron@monash.edu. 

 

  

mailto:neil.cameron@monash.edu


 2 

Abstract 

Understanding how neurodegenerative disorders develop is not only a key challenge for 

researchers but also for the wider society, given the rapidly ageing populations in developed 

countries.  Advances in this field require new tools with which to recreate neural tissue in 

vitro and produce realistic disease models.  This in turn requires robust and reliable systems 

for performing 3D in vitro culture of neural lineage cells.  This review provides a state of the 

art update on three-dimensional culture systems for in vitro development of neural tissue, 

employing a wide range of scaffold types including hydrogels, solid porous polymers, fibrous 

materials and decellularised tissues as well as microfluidic devices and lab-on-a-chip systems.  

To provide some context with in vivo development of the central nervous system (CNS), we 

also provide a brief overview of the neural stem cell niche, neural development and neural 

differentiation in vitro. We conclude with a discussion of future directions for this exciting 

and important field of biomaterials research. 
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Statement of Significance 

Neurodegenerative diseases, including dementia, Parkinson’s and Alzheimer’s diseases and 

motor neuron diseases, are a major societal challenge for ageing populations.  

Understanding these conditions and developing therapies against them will require the 

development of new physical models of healthy and diseased neural tissue.  Cellular models 

resembling neural tissue can be cultured in the laboratory with the help of 3D scaffolds – 

materials that allow the organisation of neural cells into tissue-like structures.  This review 

presents recent work on the development of different types of scaffolds for the 3D culture 

of neural lineage cells and the generation of functioning neural-like tissue.  These in vitro 

culture systems are enabling the development of new approaches for modelling and 

tackling diseases of the brain and CNS. 
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Abbreviations 

2D  two dimensional 

3D three dimensional 

BDNF brain derived neurotrophic factor 

bFGF basic fibroblast growth factor 

BMP bone morphogenic protein 

CNS  central nervous system 

CNTF ciliary neurotrophic factor 

d days 

ECM  extra cellular matrix 

ECS embryonic stem cell 

EGF  epidermal growth factor 

FDA Food and Drug Administration 

FGF fibroblast growth factor 

FGF8 fibroblast growth factor 8 

GSK3βi glycogen synthase kinase-3β inhibitor 

hiPSC human induced pluripotent stem cell 

hPSC human pluripotent stem cell 

iPSC induced pluripotent stem cell 

NGF nerve growth factor 

NPC  neural progenitor cell 

NS/PC neural stem/progenitor cell 

NSC neural stem cell 

PEG poly(ethylene glycol) 

PHEMA poly(hydroxyethyl methacrylate) 

PLA poly(lactic acid) 

PSC pluripotent stem cell 
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RA retinoic acid 

RG radial glial stem cell 

SGZ subgranular zone 

SHH sonic hedgehog 

SVZ  subventricular zone 

VEGF vascular endothelial growth factor 

vmIPN variable moduli interpenetrating polymer network  
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1. Introduction 

The brain is the least understood organ in the human body. It is difficult to access, highly 

susceptible to damage and complex in structure and function. The poor understanding of 

the human brain is reflected in the lack of effective treatments for various neurological 

disorders such as Parkinson’s and Alzheimer’s disease and motor neuron disorders. To 

address this research gap, new methods for the culture of human neural (neuronal and glial) 

lineage cells, particularly in vitro 3D culture, are being developed to more accurately 

reconstruct the complex in vivo structure and function of the human brain.  

Human somatic cells cultured in flat, stiff, 2D environments typically display an irregular 

morphology and form unnatural cell-cell interactions [1]. Traditional monolayer cell cultures 

are simple and convenient to analyse, however tissue specific architecture, mechanical and 

biochemical cues and cell-cell communication are lost to various degrees. This can lead to 

physiological inaccuracies that can be extremely problematic for disease modelling and pre-

clinical drug screening. In cancer research, it has been found that studies with animal 

models often do not result in successful translation to human trials because of the limited 

similarity to human physiology [2]. Both these scenarios can have considerable detrimental 

impacts on the progression of new drug candidates from pre-clinical trials to clinical trials, 

and can be particularly evident when modelling complex disease states such as those found 

in the central nervous system (CNS) [3]. 

Three dimensional (3D) cell culture systems aim to replicate the in situ functions of living 

tissue, by providing a more physiologically relevant environment for cell growth and 

function. Engineering neural tissue that is truly representative of that found in the human 

brain and central nervous system requires a scaffold to recreate the 3D in vivo 
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microenviornment. Various materials (natural and synthetic) in different formats (gels, 

porous solids and fibres) can be used as scaffolds to aid the 3D culture of replicating and 

terminally differentiated cells. To aid tissue growth and increase physiological relevance, 

scaffolds can be surface modified, mechanically tuned or chemically/biologically 

functionalised all of which have been shown to aid cell attachment, proliferation and 

differentiation. This review describes recent progress on developing scaffolds for the in vitro 

3D culture of neural stem cells and their derivative neuronal and glial lineage cell types. To 

give the reader a deeper understanding of the topic, it also provides some background 

information on neurogenesis and the neural stem cell (NSC) niche in the embryonic and 

adult human brain. 

 

2. The neural stem cell niche and neural differentiation in vitro 

Somatic/adult stem cells reside in specialized microenvironments that provide specific 

extracellular conditions, primarily to maintain quiescence to prevent cell exhaustion, but 

also to induce differentiation and cell specialisation when required. Various stem cell niches 

exist within the adult human body including the bone marrow, the bulge of the hair follicle, 

the apex of the testis and the subventricular zone (SVZ) of the brain [4]. Much like any 

extracellular environment, the stem cell niche influences cell behaviour by a combination of 

signals from the extracellular matrix (ECM), various factors, nutrient and waste gradients, 

oxygen concentration, shear stress and temperature. The stem cell niche provides the ideal 

set of conditions for the maintenance and differentiation of stem cells. Understanding the 

makeup and function of the niche is critical in the construction of environments that mimic 

it, particularly in the field of tissue engineering. [5]. 
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2.1 The embryonic neural stem cell niche and human brain development 

In the developing embryo, four weeks post-conception, invaginating epithelial neural plate  

cells form what is known as the neural tube, a single layer of proliferating columnar 

neuroepithelial cells that eventually give rise to the CNS (brain and spinal cord). Through 

careful spatial and temporal environmental control, these primary neural stem cells can 

form neurons and glial cells, and organize themselves into the CNS. Neuroepithelial cells 

extend from ventricular (apical) to pial (basal) surfaces in an orientation known as apical-

basal polarity. Neuroepithelial cells initially divide symmetrically producing two identical 

multipotent daughter cells [6]. Later in development they divide asymmetrically generating 

a self-renewing radial glial (progenitor) cell and a differentiating neuroblast [7] at the apical 

surface, and a basal progenitor and differentiating neuroblast at the basal surface [8, 9]. 

Outer radial glial cells, of the SVZ and beyond, act as a guide for the migration of newly 

formed neurons, which then is critical for the formation of the cortex layer (Figure 1) [10]. 

 

 

Figure 1.  Cellular organization and differentiation during early development and 

neurogenesis in the human brain (time in weeks). See text for a description of processes of 

early development and neurogenesis. Figure reproduced from [11] © 2015 Budday, 

Steinmann and Kuhl. 
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2.2 The adult human neural stem cell niche 

Neural stem cells reside in two defined niches, the SVZ of the lateral ventricles and the 

subgranular zone (SGZ) in the hippocampal formation. They are also theorised to reside in 

other less well characterised regions, including the neocortex, substantia nigra, amygdala 

and striatum [12]. 

 

The SVZ, which has been studied extensively, has been found to consist of four distinct 

layers (Figure 2A) [13]. A layer of ependymal cells acts as a barrier to the cerebrospinal fluid 

of the ventricle (Figure 2A). A layer of sparse neuronal cell bodies intertwined with 

ependymal processes then line the ependymal region (Figure 2A) [13]. On top of this layer 

sits a ribbon of proliferative astrocyte somata (Figure 2A), which have been shown to be 

primary neural progenitors in rodent brains, but not yet conclusively demonstrated as such 

in human brains [14, 15]. The fourth layer is then a transition between the third layer and 

the brain parenchyma, composed of some neuronal bodies and myelin tracts (Figure 2A) 

[16].  

 

Figure 2. Schematic diagrams showing the human SVZ [17] (A) and the human SGZ [18] (B). 

See text for an explanation of zones in the SVZ. Abbreviations: SGZ, subgranular zone, GCL, 

granule cell layer, ML, molecular layer. Image in (B) reproduced with permission © Nature 

Publishing Group. 
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The SGZ is not as well characterised as the SVZ and is comparatively a much smaller niche 

(Figure 2B). The mammalian SGZ exists at the interface of the hilus and the granule cell layer 

within the hippocampus. SGZ progenitors, like the SVZ, exist as astrocyte-like cells. Radially 

oriented astrocytes, also referred to as type I progenitors or Type D cells (Figure 2B dark 

green), are oriented at the base of the SGZ and extend through the granule cell layer [19]. 

Horizontal astrocytes (Figure 2B purple), which have yet to be proven to act as precursor 

cells, also exist at the base of the SGZ, but lack the extension of radial astrocytes [20]. Radial 

astrocytes form type II progenitors (Figure 2B blue), which form tight clusters, migrate to 

the granule cell layer along the radial astrocytes, and differentiate to granule neurons [21]. 

 

2.3 Biological factors regulating/influencing neurogenesis in the neural stem cell niche 

The neural stem cell (NSC) niche modulates a variety of biological factors to control NSC 

proliferation and differentiation. Both soluble and membrane bound factors of the 

neurogenic niches have been identified as participating in neurogenesis. Of these, the most 

important include epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) 

which promote NSC proliferation and β1-integrin expression at early and late stages of 

neurogenesis respectively [22].   

ECM molecules and basal lamina components in the SVZ interact with NSCs to maintain 

quiescence, induce differentiation and aid migration [23]. Heparan and chondroitin sulphate 

proteoglycans present EGF and bFGF to neural stem cells to regulate proliferation and 

differentiation [24].  

Morphogens such as bone morphogenic proteins (BMPs), Wnt, Notch and Sonic Hedgehog 

are all critical in the regulation of adult neurogenesis [25]. While the role of BMPs in 



 13 

neurogenesis is extremely complex, and has been shown to exert a plethora of effects 

during development and maintenance of the nervous system, generally they are associated 

with the inhibition of neurogenesis. BMP antagonists such as Noggin, Chordin and Follistatin 

and others have been shown to play a key role in the induction of neurogenesis [26, 27]. For 

a further in depth analysis of the control of neurogenesis by morphogenic-signalling 

molecules the reader is directed to the review by Choe et al [25]. 

Vascularization to the NSC niche occurs simultaneously alongside its growth and expansion. 

Vascularization is critical for the growth, development and maintenance of the CNS. A 

critical factor in the development of vascularization and the neurovascular niche is vascular 

endothelial growth factor (VEGF). As well as being well known for controlling angiogenesis, 

VEFG has also recently been shown to be a critical factor in the direct promotion of 

neurogenesis [28-30]. VEGF has been shown to increase migration survival [31] and enhance 

proliferation and differentiation [32] of neural progenitor cells. 

 

2.4 The extracellular matrix of the Central Nervous System 

The extracellular matrix (ECM) in the brain, as in other organs, plays a defining role in 

regulating stem cell differentiation, migration and proliferation during development [33]. 

The brain ECM takes on many different forms and compositions throughout neurogenesis 

[34].  

The ECM of the CNS can be divided into three main sections (Figure 3). The first is the 

basement membrane, a layer that surrounds the endothelial cells of blood vessels, which is 

mainly composed of laminin, fibronectin and heparin sulphate proteoglycan. The second 

section consists of perineuronal nets that surround neuronal cell bodies and smaller 
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neurons. These nets are composed of hyaluronic acid, proteoglycans, tenascin R and link 

proteins [35]. The final section is the neural interstitial matrix, a dense network of ECM 

components furthest away from the basement membrane and perineuronal nets. The ECM 

polymer network itself is primarily composed of a hyaluronic acid-based backbone [36] 

functionalised with ECM proteins. 

 

Figure 3. The brain extracelluar matrix is arranged in three regions; the basement 

membrane, perineuronal nets and a neural interstitial matrix [37]. Image reproduced with 

permission © Nature Publishing Group. 

 

Brain ECM proteins such as collagens, laminins and fibronectins provide mechanical support 

as well as important molecular cues for cell behaviour. Laminin, when compared to 

fibronectin and ECM-like matrices such as poly-L-ornithine and MatrigelTM,  has proven to be 

the most suitable 2D substrate for neural progenitor cell (NPC) migration, expansion, 

differentiation into neural cells and for the elongation of neurons [38]. During neurogenesis 

the ECM is constantly changing its morphology to modulate and guide axonal growth. 

Morphological changes are caused by cleavage of bonds by enzymes, particularly matrix 

metalloproteinases [39]. 

It is not only the chemical and biological cues from the extracellular environment that 

influence how neural stem and progenitor cells differentiate into mature neurons, 

astrocytes and oligodendrocytes; it is also physical, and more specifically mechanical, cues 

from the ECM that can determine stem cell fate. The elastic modulus of the human brain 
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varies across different regions. Different moduli are typically displayed by white and grey 

matter regions. The mammalian white matter, which is composed of the majority of glial 

cells and axons, is the stiffer of the two, with an elastic modulus of 1.9 kPa [40]. The 

mammalian grey matter, primarily composed of neuronal cell bodies, is elastically weaker 

with an elastic modulus of 1.4 kPa [40]. For a comprehensive review of mechanical property 

values of the brain the reader is directed to the review by Aurand et al [41]. 

 

2.5 Replicating neural differentiation pathways in vitro 

Pluripotent stem cells (PSCs) can be expanded indefinitely, can potentially give rise to any 

cell type in the adult body, and are inclusive of embryonic stem cells (ESCs)[42] and induced 

pluripotent stem cells (iPSCs)[43, 44]. iPSCs are pluripotent stem cells produced via the 

genetic reprogramming of somatic cells to convert them back to a pluripotent-like state [45].  

Significant work has been done to direct the differentiation of PSCs and neural stem cells to 

specific neural cell sub-types in vitro [46]. This has mainly been to study human 

neurobiology and interrogate neurological disease processes, which can be specific to 

certain neuronal or glial cell types, and to identify or test novel pharmacological therapeutic 

agents. The directed in vitro differentiation of hPSCs has been demonstrated for various 

neural lineages such as cortical neurons [47, 48], dopaminergic neurons [49], motor neurons 

[50], striatal neurons [51], and also for astrocyte and oligodendrocyte glial lineages [52]. 

This has been achieved by two approaches. The first is the introduction of growth factors or 

small molecules to hPSC culture to coax differentiation down a particular cell-type pathway 

(Figure 4). The second is by direct reprogramming of a somatic cell type via ectopic 

expression of genes that drive cells to a neural lineage fate, bypassing the pluripotent stage. 
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The ability to control and direct the differentiation of human pluripotent stem cells has huge 

potential impact for disease modelling and treatment strategies. As different neural cell 

types vary in their susceptibility to specific neurological diseases, patient-derived hiPSCs, 

and their derivative neuronal and glial lineage cells, may hold the key to accurately 

modelling an environment where these diseases can be studied in greater context and drug 

screening can identify effective therapeutics. This, coupled with the development of 

different types of scaffold materials in which to culture iPSC-derived neural precursor cells 

in a 3D format, represents a powerful technology platform for developing human neural 

tissue models, disease modelling and screening for new therapeutics. The majority of 

examples in this review explore the use of hPSC-derived NPCs and their progeny cultured in 

3D formats. 

 

Figure 4. Directed in vitro differentiation of pluripotent stem cells to different neuronal and 

glial cell subtypes. Induction factors highlighted in black and cellular markers highlighted in 

blue. Abbreviations: CNTF, ciliary neurotrophic factor; d, days of growth factor–driven 

differentiation; EGF, epidermal growth factor; FGF, fibroblast growth factor; FGF8, fibroblast 

growth factor 8; GSK3βi, glycogen synthase kinase-3β inhibitor; iPSC, induced pluripotent 

stem cell; RA, retinoic acid; SHH, sonic hedgehog; SMAD, intracellular proteins that 

transduce extracellular signals from TGFβ signaling; WNT, family of Wnt signaling pathways; 

WNTi, inhibitors of Wnt signaling pathways. [46]. Image re-used with permission © Annual 

Reviews. 
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3. Scaffolds for 3D in vitro NPC culture 

Depending on the end application, numerous matrix materials have been used to support 

3D cell culture. These include synthetic polymers, natural polymers, natural-synthetic 

hybrids, metals, ceramics, glass and carbon nanotubes. Synthetic polymers are preferred 

due to the ability to control their physical and chemical properties, but they lack the 

biological activity of natural polymers [53]. The format and manufacturing technique for 

different types of scaffolds varies depending on application. Some scaffold formats include 

polymer gels, solid porous scaffolds, fibrous scaffolds, and acellular scaffolds (Figure 5) [54, 

55]. A comprehensive summary table of scaffold formats and materials used for 3D NPC and 

NPC-derivative cell culture is provided (Table 1). 

 

Figure 5. Tissue engineering scaffold types and synthesis techniques. A) Hydrogel scaffolds 

formed via the crosslinking of polymers or macromers. B) Solid porous scaffolds formed via 

phase separation technique. C) Fibrous scaffolds formed via the electrospinning process [56]. 

Image reused with permission © John Wiley & Sons. 

 

Table 1. A comprehensive summary of 3D scaffold formats and materials used for the 

culture and differentiation of neural stem and progenitor cells. 

Scaffold Material Cell Culture Scope/Purpose Reference 

HYDROGELS: Natural Materials 
Type-I Collagen Rat cortical neural precursor 

cells 
Expansion and differentiation 
of NPCs to neurons and 
astrocytes in 3D 

O'Connor SM, Stenger DA, 
Shaffer KM, Maric D, Barker JL, 
Ma W. Primary neural 
precursor cell expansion, 
differentiation and cytosolic 
Ca2+ response in three-
dimensional collagen gel. 
Journal of Neuroscience 
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Methods 2000;102:187-95. 
[57] 

Type-I Collagen Embryonic rat neural stem and 
progenitor cells 

The first example of functional 
synapse and neuronal network 
formation in a 3D matrix 

Ma W, Fitzgerald W, Liu QY, 
O'Shaughnessy TJ, Maric D, Lin 
HJ, et al. CNS stem and 
progenitor cell differentiation 
into functional neuronal 
circuits in three-dimensional 
collagen gels. Experimental 
Neurology 2004;190:276-88. 
[58] 

Type-I Collagen Embryonic rat neural stem 
cells and neural progenitor 
cells 

Combined with a bioreactor 
system, scaffolds yield 
structures that are bigger with 
less necrosis  

Lin HJ, O'Shaughnessy TJ, Kelly 
J, Ma W. Neural stem cell 
differentiation in a cell–
collagen–bioreactor culture 
system. Developmental Brain 
Research 2004;153:163-73. 
[59] 

Type-I Collagen Embryonic rat neural stem and 
progenitor cells 

When combined with a rotary 
wall bioreactor, structures had 
less necrosis and formed 
layered structures 

Ma W, Chen S, Fitzgerald W, 
Maric D, Lin HJ, O'Shaughnessy 
TJ, et al. Three-Dimensional 
Collagen Gel Networks for 
Neural Stem Cell-Based Neural 
Tissue Engineering. 
Macromolecular Symposia 
2005;227:327-34. [60] 

Calcium-alginate Mouse hippocampal neural 
stem cells 

The calcium-alginate beads 
allowed for culture of large 
numbers of NSCs with high 
recovery rate 

Li X, Liu T, Song K, Yao L, Ge D, 
Bao C, et al. Culture of neural 
stem cells in calcium alginate 
beads. Biotechnology progress 
2006;22:1683-9. [61] 

Type-1 Collagen/hyaluronan 
composite 

Culture and differentiation of 
embryonic and adult mouse 
neural stem/progenitor cells 
(NS/PCs) 

Enhanced the physiological 
relevance of NS/PC culture and 
differentiation compared to 2D 

Brännvall K, Bergman K, 
Wallenquist U, Svahn S, 
Bowden T, Hilborn J, et al. 
Enhanced neuronal 
differentiation in a three-
dimensional collagen-
hyaluronan matrix. Journal of 
Neuroscience Research 
2007;85:2138-46. [62] 

Hyaluronic acid  Ventral midbrain mouse neural 
stem cells 

Stiffer hydrogels cause mostly 
astrocyte differentiation and 
softer hydrogels neuronal 
differentiation 

Seidlits SK, Khaing ZZ, Petersen 
RR, Nickels JD, Vanscoy JE, 
Shear JB, et al. The effects of 
hyaluronic acid hydrogels with 
tunable mechanical properties 
on neural progenitor cell 
differentiation. Biomaterials 
2010;31:3930-40. [63] 

Type-I Collagen Human neural progenitor-
derived astrocytes 

Studying axon growth 
promoting effects in 3D on 
dorsal root ganglion 

Führmann T, Hillen LM, 
Montzka K, Wöltje M, Brook 
GA. Cell–Cell interactions of 
human neural progenitor-
derived astrocytes within a 
microstructured 3D-scaffold. 
Biomaterials 2010;31:7705-15. 
[64] 

Type-I Collagen Culture and differentiation of 
rat NS/PCs to neurons, 
astrocytes and 
oligodendrocytes 

Applications as animal 
surrogates for drug discovery 
and toxicity testing 

Ge D, Song K, Guan S, Qi Y, 
Guan B, Li W, et al. Culture and 
Differentiation of Rat Neural 
Stem/Progenitor Cells in a 
Three-Dimensional Collagen 
Scaffold. Applied Biochemistry 
and Biotechnology 
2013;170:406-19. [65] 

Hyaluronic acid-catechol Human neural stem cells Hydrogel displayed pH-
dependent adhesive/cohesive 
properties for neural tissue 
engineering 

Hong S, Yang K, Kang B, Lee C, 
Song IT, Byun E, et al. 
Hyaluronic Acid Catechol: A 
Biopolymer Exhibiting a pH-
Dependent Adhesive or 
Cohesive Property for Human 
Neural Stem Cell Engineering. 
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Advanced Functional Materials 
2013;23:1774-80. [66] 

Alginate ReNcell VM human neural 
progenitor cells 

A high throughput microarray 
platform for the growth, 
differentiation and 
toxicological study of NPCs  

Meli L, Barbosa HSC, Hickey 
AM, Gasimli L, Nierode G, 
Diogo MM, et al. Three 
dimensional cellular 
microarray platform for human 
neural stem cell differentiation 
and toxicology. Stem Cell 
Research 2014;13:36-47. [67] 

Type-I Collagen Primary embryonic rat 
progenitor cells spheroids 

Study of the proliferation and 
differentiation of corpus 
striatum progenitors in 3D  

Cruz Gaitán AM, Torres-Ruíz 
NM, Carri NG. Embryonic 
neural stem cells in a 3D 
bioassay for trophic 
stimulation studies. Brain 
Research Bulletin 2015;115:37-
44. [68] 

Matrigel ReNcell VM human neural 
progenitor cells  

A 3D Alzheimer’s disease 
model that exhibits key events 
in pathogenesis 

Kim YH, Choi SH, D'Avanzo C, 
Hebisch M, Sliwinski C, 
Bylykbashi E, et al. A 3D human 
neural cell culture system for 
modeling Alzheimer's disease. 
Nat Protocols 2015;10:985-
1006. [69] 

Type-I Collagen Embryonic murine neural stem 
cells 

Investigates the sensitivity of 
NSCs in 3D to heavy metals 

Tasneem S, Farrell K, Lee M-Y, 
Kothapalli CR. Sensitivity of 
neural stem cell survival, 
differentiation and neurite 
outgrowth within 3D hydrogels 
to environmental heavy 
metals. Toxicology Letters 
2016;242:9-22. [70] 

HYDROGELS: Synthetic Materials 
Poly(lactide-co-glycide) 
microspheres loaded in 
alginate hydrogel 

Adult rat neural progenitor 
cells 

NPCs can be cultured and 
expanded in this system and 
showed increased expansion in 
the degradable alginate 
compared to non-degradable 
systems 

Ashton RS, Banerjee A, 
Punyani S, Schaffer DV, Kane 
RS. Scaffolds based on 
degradable alginate hydrogels 
and poly (lactide-co-glycolide) 
microspheres for stem cell 
culture. Biomaterials 
2007;28:5518-25. [71] 

IKVAV-incorporated RADA16 
self-assembling peptide 

Primary mouse neural stem 
cells 

Self-assembling scaffold for 
neural tissue engineering 
applications 

Zhang ZX, Zheng QX, Wu YC, 
Hao DJ. Compatibility of neural 
stem cells with functionalized 
self-assembling peptide 
scaffold in vitro. Biotechnology 
and Bioprocess Engineering 
2010;15:545-51. [72] 

Laminin-functionalised 
PuraMatrix 

ReNcell VM human neural 
progenitor cells 

Optimization of a 3D-scaffold 
NPC culture and differentiation 
protocol 

Ortinau S, Schmich J, Block S, 
Liedmann A, Jonas L, Weiss 
DG, et al. Effect of 3D-scaffold 
formation on differentiation 
and survival in human neural 
progenitor cells. BioMedical 
Engineering OnLine 2010;9:70. 
[73] 

C16H31O-A3G4D2 IKVAV self-
assembling peptide 

Rat neural progenitor cells A self-assembling peptide 
hydrogel for the encapsulation 
and differentiation of NPCs 

Song Y, Li Y, Zheng Q, Wu K, 
Guo X, Wu Y, et al. Neural 
Progenitor Cells Survival and 
Neuronal Differentiation in 
Peptide-Based Hydrogels. 
Journal of Biomaterials 
Science, Polymer Edition 
2011;22:475-87. [74] 

Methacrylamide chitosan Adult rat neural 
progenitor/stem cells 

Macroporosity was shown to 
effectively promote NS/PC 3D 
differentiation 

Li H, Wijekoon A, Leipzig ND. 
3D differentiation of neural 
stem cells in macroporous 
photopolymerizable hydrogel 
scaffolds. PLoS One 
2012;7:e48824. [75] 
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IKVAV-RADA16 self-assembling 
peptide 

Rat neural stem cells The IKVAV-functionalised 
peptide was shown both In 
vivo and in vitro to support the 
NSC growth and differentiation 

Cheng T-Y, Chen M-H, Chang 
W-H, Huang M-Y, Wang T-W. 
Neural stem cells encapsulated 
in a functionalized self-
assembling peptide hydrogel 
for brain tissue engineering. 
Biomaterials 2013;34:2005-16. 
[76] 

Flourinated methacrylamide 
chitosan 

Adult rat neural stem 
progenitor cells 

The material enhanced oxygen 
exchange and neuronal 
differentiation when compared 
to the unflourinated material 

Li H, Wijekoon A, Leipzig ND. 
Encapsulated Neural Stem Cell 
Neuronal Differentiation in 
Fluorinated Methacrylamide 
Chitosan Hydrogels. Ann 
Biomed Eng 2014;42:1456-69. 
[77] 

Polyurethane Adult mouse neural stem cells Thermoresponsive 
biodegradable polyurethane 
bioink was used to print NSCs 

Hsieh F-Y, Lin H-H, Hsu S-h. 3D 
bioprinting of neural stem cell-
laden thermoresponsive 
biodegradable polyurethane 
hydrogel and potential in 
central nervous system repair. 
Biomaterials 2015;71:48-57. 
[78] 

IKVAV/RGD functionalised 
RADA16-I self- assembling 
peptide 

Embryonic rat neural 
progenitor and neural stem 
cells 

A new self-assembling peptide 
with a more permissive 
environment for nerve 
regeneration 

Sun Y, Li W, Wu X, Zhang N, 
Zhang Y, Ouyang S, et al. 
Functional Self-Assembling 
Peptide Nanofiber Hydrogels 
Designed for Nerve 
Degeneration. ACS Applied 
Materials & Interfaces 
2016;8:2348-59. [79] 

Methacrylate-modified 
hyaluronic acid 

Human iPSC-derived NPCs Layered hydrogel of different 
modulus influences migration 
and differentiation 

Zhang Z-N, Freitas BC, Qian H, 
Lux J, Acab A, Trujillo CA, et al. 
Layered hydrogels accelerate 
iPSC-derived neuronal 
maturation and reveal 
migration defects caused by 
MeCP2 dysfunction. 
Proceedings of the National 
Academy of Sciences 
2016;113:3185-90. [80] 

RGD-functionalised strain-
promoted azide-alkyne 
cycloaddition (SPAAC) 
covalently crosslinked elastin-
like protein (ELP) gel  

Murine neural progenitor cells A versatile hydrogel capable of 
functionalization via 
crosslinking useful in 
bioprinting applications 

Madl CM, Katz LM, Heilshorn 
SC. Bio-Orthogonally 
Crosslinked, Engineered 
Protein Hydrogels with 
Tunable Mechanics and 
Biochemistry for Cell 
Encapsulation. Advanced 
Functional Materials 
2016;26:3612-20. [81] 

PuraMatrix Adult rat neural 
stem/progenitor cells 

When compared, surface 
plating and injection culture 
methods gave better 
expansion and differentiation 
than an encapsulation method 

Aligholi H, Rezayat SM, Azari H, 
Ejtemaei Mehr S, Akbari M, 
Modarres Mousavi SM, et al. 
Preparing neural 
stem/progenitor cells in 
PuraMatrix hydrogel for 
transplantation after brain 
injury in rats: A comparative 
methodological study. Brain 
Research 2016;1642:197-208. 
[82] 

SOILD POROUS SCAFFOLDS 
Porous poly(lactic-co-glycolic 
acid)/Polylysine  

Murine neural stem cells Scaffolds were implanted with 
NSCs and used to mouse repair 
spinal cord  

Teng YD, Lavik EB, Qu X, Park 
KI, Ourednik J, Zurakowski D, 
et al. Functional recovery 
following traumatic spinal cord 
injury mediated by a unique 
polymer scaffold seeded with 
neural stem cells. Proceedings 
of the National Academy of 
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Sciences 2002;99:3024-9. [83] 

Poly(lactic-co-glycolic acid) 
porous polymer 

Embryonic rat neural stem 
cells 

Biodegradable scaffolds with 
aligned pores demonstrate 
ability to act as platforms for 
axonal regeneration 

Olson HE, Rooney GE, Gross L, 
Nesbitt JJ, Galvin KE, Knight A, 
et al. Neural stem cell–and 
Schwann cell–loaded 
biodegradable polymer 
scaffolds support axonal 
regeneration in the transected 
spinal cord. Tissue Engineering 
Part A 2009;15:1797-805. [84] 

Porous polystyrene Human neural progenitor cells Identification of 13 cytokines 
upregulated when cells are 
cultured in 3D compared to 2D 

Lai Y, Asthana A, Cheng K, 
Kisaalita WS. Neural cell 3D 
microtissue formation is 
marked by cytokines' up-
regulation. PloS one 
2011;6:e26821. [85] 

Porous polystyrene Human neural progenitor cells A new 3D scaffold for the 
culture of active NPCs 

Lai Y, Kisaalita WS. 
Performance Evaluation of 3D 
Polystyrene 96-Well Plates 
with Human Neural Stem Cells 
in a Calcium Assay. Journal of 
Laboratory Automation 
2012;17:284-92. [86] 

Graphene foam Adult mouse hippocampal 
NSCs 

Conductive graphene foams 
gave good electrical 
stimulation of differentiated 
NSCs 

Li N, Zhang Q, Gao S, Song Q, 
Huang R, Wang L, et al. Three-
dimensional graphene foam as 
a biocompatible and 
conductive scaffold for neural 
stem cells. Scientific reports 
2013;3. [87] 

Multi-walled carbon nanotube 
functionalised porous 
chondroitin sulphate  

Embryonic rat neural 
progenitor cells 

Shows the formations of active 
neuronal cell cultures 

Serrano MC, Nardecchia S, 
García-Rama C, Ferrer ML, 
Collazos-Castro JE, del Monte 
F, et al. Chondroitin sulphate-
based 3D scaffolds containing 
MWCNTs for nervous tissue 
repair. Biomaterials 
2014;35:1543-51. [88] 

Alvetex porous polystyrene  Human neural stem cells Identification of specific 
miRNA implicated in hNSC 
differentiation 

Stevanato L, Sinden JD. The 
effects of microRNAs on 
human neural stem cell 
differentiation in two- and 
three-dimensional cultures. 
Stem Cell Research & Therapy 
2014;5:49. [89] 

Silk Human neural progenitor cells Enhanced cell viability and 
proliferation over 14 days 
showing potential for tissue 
engineering purposes 

Subia B, Rao RR, Kundu SC. Silk 
3D matrices incorporating 
human neural progenitor cells 
for neural tissue engineering 
applications. Polymer Journal 
2015.[90] 

FIBROUS SCAFFOLDS 
Polyglycolic acid microfibres Murine neural stem cells NSCs were seeded onto the 

polymer scaffold and 
implanted into injured mouse 
brains 

Park KI, Teng YD, Snyder EY. 
The injured brain interacts 
reciprocally with neural stem 
cells supported by scaffolds to 
reconstitute lost tissue. Nature 
Biotechnology 2002;20:1111-7. 
[91] 

Poly(L-lactic acid) nanofibres Neonatal mouse cerebellum 
stem cells 

NSCs differentiated and fibres 
acted as positive cues for 
neurite out-growth 

Yang F, Murugan R, 
Ramakrishna S, Wang X, Ma Y-
X, Wang S. Fabrication of nano-
structured porous PLLA 
scaffold intended for nerve 
tissue engineering. 
Biomaterials 2004;25:1891-
900. [92] 

Self-assembled IKVAV 
functionalised peptide 
nanofibres 

Murine neural progenitor cells A high density of IKVAV 
functionalisation induced rapid 
neuronal differentiation 

Silva GA, Czeisler C, Niece KL, 
Beniash E, Harrington DA, 
Kessler JA, et al. Selective 
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Differentiation of Neural 
Progenitor Cells by High-
Epitope Density Nanofibers. 
Science 2004;303:1352-5. [93] 

Poly(L-lactic acid) nanofibres Mouse cerebellum neural stem 
cells 

Scaffold promotes NSC 
adhesion and supports 
differentiation and neurite 
outgrowth  

Yang F, Xu C, Kotaki M, Wang 
S, Ramakrishna S. 
Characterization of neural 
stem cells on electrospun poly 
(L-lactic acid) nanofibrous 
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Biomaterials Science, Polymer 
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Functionalised RADA16 self-
assembling peptide 

Adult mouse neural stem cells The intrinsically defined 
scaffold gave similar NSC 
culture results to Matrigel 

Gelain F, Bottai D, Vescovi A, 
Zhang S. Designer Self-
Assembling Peptide Nanofiber 
Scaffolds for Adult Mouse 
Neural Stem Cell 3-
Dimensional Cultures. PLOS 
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Poly(ε-caprolactone) 
nanofibres 

Rat brain-derived neural stem 
cells 

Ethylenediamine 
functionalisation increased 
NSC cell adhesion 

Nisbet DR, Yu LMY, Zahir T, 
Forsythe JS, Shoichet MS. 
Characterization of neural 
stem cells on electrospun 
poly(ε-caprolactone) 
submicron scaffolds: 
evaluating their potential in 
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Journal of Biomaterials 
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2008;19:623-34. [96] 

BDNF-immobilized poly- ε-
caprolactone nanofibres 

Mouse neural stem cells BDNF-functionalised 
nanofibers supports NSCs and 
their derivatives 

Horne MK, Nisbet DR, Forsythe 
JS, Parish CL. Three-
dimensional nanofibrous 
scaffolds incorporating 
immobilized BDNF promote 
proliferation and 
differentiation of cortical 
neural stem cells. Stem cells 
and development 
2009;19:843-52. [97] 

Polyhydroxylalkanoate 
nanofibres 

Rat-derived neural stem cells 3D nanofibers display 
suitability for NSC attachment, 
synaptic outgrowth and 
synaptogenesis 

Xu X-Y, Li X-T, Peng S-W, Xiao J-
F, Liu C, Fang G, et al. The 
behaviour of neural stem cells 
on polyhydroxyalkanoate 
nanofiber scaffolds. 
Biomaterials 2010;31:3967-75. 
[98] 

RGD and bone marrow homing 
peptide functionalised self-
assembling peptide  

Adult mouse neural stem cells NSCs are viable, proliferate 
and differentiate on the 
material 

Cunha C, Panseri S, Villa O, 
Silva D, Gelain F. 3D culture of 
adult mouse neural stem cells 
within functionalized self-
assembling peptide scaffolds. 
Int J Nanomedicine 
2011;6:943-55. [99] 

Chitin-alginate microfibres Human iPSCs and derived 
hNPCs and neurons 

A platform for the generation 
of large number of targeted 
differentiated neural cells 

Lu HF, Lim S-X, Leong MF, 
Narayanan K, Toh RPK, Gao S, 
et al. Efficient neuronal 
differentiation and maturation 
of human pluripotent stem 
cells encapsulated in 3D 
microfibrous scaffolds. 
Biomaterials 2012;33:9179-87. 
[100] 

Poly-ε-caprolactone 
microfibers coated in BDNF 
immobilized polyelectrolyte 
multilayers 

ESC-derived mouse neural 
progenitor cells 

A biofunctionalised complex 
3D scaffold for 3D neural cell 
culture 

Zhou K, Thouas G, Bernard C, 
Forsythe JS. 3D presentation of 
a neurotrophic factor for the 
regulation of neural progenitor 
cells. Nanomedicine 
2013;9:1239-51. [101] 

ACELLULAR SCAFFOLDS 
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Genepin crosslinked acellular 
rat brain matrix  

Rat adult neural stem cells Scaffolds showed high 
cytocompatibility and 
suitability as tissue engineering 
scaffolds for CNS tissue 

He H, Li W, Su J, Wang H, Ye Z, 
Cai M, et al. In Vitro Evaluation 
of the Cytocompatibility of an 
Acellular Rat Brain Matrix 
Scaffold with Neural Stem 
Cells. Journal of Biomaterials 
and Tissue Engineering 
2015;5:628-34. [102] 

MICROFLUIDIC DEVICES AND LAB ON A CHIP SYSTEMS 
Matrigel microfluidic gradient 
generator 

Human neural progenitor cells Exponential FGF gradients 
were shown to be useful in 
generating asymmetrical 
neuronal cultures 

Keenan TM, Grinager JR, 
Procak AA, Svendsen CN. In 
vitro localization of human 
neural stem cell neurogenesis 
by engineered FGF-2 gradients. 
Integrative Biology 
2012;4:1522-31. [103] 

Series of microchannels for 
nutrient diffusion 

Immortalized mouse neural 
progenitor cells 

The device controlled medium 
diffusion and prevented 
spontaneous differentiation 
caused by lack of nutrients  

Wang B, Jedlicka S, Cheng X. 
Maintenance and Neuronal 
Cell Differentiation of Neural 
Stem Cells C17.2 Correlated to 
Medium Availability Sets 
Design Criteria in Microfluidic 
Systems. PLoS ONE 
2014;9:e109815. [104] 

Glass microtubes Mouse neural stem cells To study the influence of 
scaffolds dimensionality and 
confinement of NSC migration 

Koch B, Meyer AK, Helbig L, 
Harazim SM, Storch A, Sanchez 
S, et al. Dimensionality of 
Rolled-up Nanomembranes 
Controls Neural Stem Cell 
Migration Mechanism. Nano 
Letters 2015;15:5530-8. [105] 

Collagen multichannel device Human foetal neural stem cells The device mimics paracrine 
signalling in the body to study 
effects on NSC behaviour 

Yang K, Park H-J, Han S, Lee J, 
Ko E, Kim J, et al. 
Recapitulation of in vivo-like 
paracrine signals of human 
mesenchymal stem cells for 
functional neuronal 
differentiation of human 
neural stem cells in a 3D 
microfluidic system. 
Biomaterials 2015;63:177-88. 
[106] 

Poly(ethylene glycol) hydrogel 
microfluidic device 

Human ESC-derived neural 
progenitor cells and other 
brain cell types 

A self-assembled 3D neural 
construct capable of accurately 
predicting neural toxicity 

Schwartz MP, Hou Z, Propson 
NE, Zhang J, Engstrom CJ, 
Costa VS, et al. Human 
pluripotent stem cell-derived 
neural constructs for 
predicting neural toxicity. 
Proceedings of the National 
Academy of Sciences 
2015;112:12516-21. [107] 

Poly(ε-caprolactone) 
microfibrous microfluidic 
channel 

Rat adult hippocampal 
stem/progenitor cells 

The scaffold supported the 
adhesion, survival and 
differentiation of NS/PCs and 
importantly allowed cell 
alignment important for 
reconnecting nerves 

Sharifi F, Patel BB, Dzuilko AK, 
Montazami R, Sakaguchi DS, 
Hashemi N. Polycaprolactone 
Microfibrous Scaffolds to 
Navigate Neural Stem Cells. 
Biomacromolecules 
2016;17:3287-97. [108] 

 

 3.1 Hydrogel Scaffolds 

Hydrogels are used as tissue engineering scaffolds typically because their soft, hydrated 

form resembles that of naturally occurring living tissue. Hydrogels are 3D hydrated polymer 
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networks, held together by chemical and/or physical crosslinks, in a dispersant, typically 

water. The mechanical properties of hydrogels can be tuned in some cases to resemble a 

range of soft tissues [109]. The high water content and highly porous nature of hydrogels 

allow for facile transport of oxygen, nutrients and waste as well as effective transport of 

soluble factors [110]. An additional attraction of hydrogels is their ability to be administered 

via injection [111]. After injection, they can conform to the available space, allowing for 

uniform tissue regeneration. However, hydrogels have to be maintained in a hydrated state, 

therefore could possibly suffer from long term stability issues in vitro [112]. Also, densely 

crosslinked gels can inhibit the natural migration of cells [113]. 

Hydrogels can easily be made to mimic the mechanical properties of the CNS. The natural 

brain ECM is primarily composed of a hyaluronic acid-based hydrogel [36], functionalised 

with a myriad of biomolecules including laminins, fibronectin, collagens, vitronectin, 

tenacins and nidogens [10]. Hydrogels obviously therefore provide an excellent scaffold 

material for neural tissue engineering. 

 

3.1.1 Natural polymer hydrogels 

Natural hydrogels of macromolecules such as collagen, gelatin, laminin, alginate and 

hyaluronic acid possess biological properties, such as bioactive motifs and cell binding 

domains for cell-matrix interactions, which can be critical for the maintenance of natural 

tissue phenotype and function. A readily used example of a naturally derived mixture of 

ECM components is MatrigelTM, an undefined and variable hydrogel mixture of ECM 

proteins. While natural hydrogels can retain their biological function in vitro, they do suffer 

from batch-to-batch variability, can have poorly defined compositions and are difficult to 
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modify biochemically [114, 115]. Natural hydrogels can be limited in their clinical application 

due to the risk of immune rejection and disease transfer [114]. While natural hydrogels 

often do not display the ideal set of characteristics for neural tissue engineering, and, unlike 

synthetic materials, cannot be designed from the bottom up, they are often modified to 

make them applicable as accurate 3D neural cell culture models. 

Collagen type-I is by far the most popular natural hydrogel material, with numerous 

publications citing its use as a scaffold for neural cell culture [57-60, 62, 65, 116-120]. Some 

other interesting examples of natural hydrogels used for neural tissue engineering include 

chitosan/gelatin hybrid hydrogels. These novel composite hydrogels were shown to 

enhance neural stem and progenitor cell adhesion and long term expansion, as well as 

differentiation to neuronal and glial cells [121]. Cylindrical collagen channels have been used 

to mimic the stem cell niche migratory pathway of the CNS. Collagen hydrogel tubes of 180 

µm were used as scaffolds to create aligned astrocyte bundles (Figure 6), which were 

demonstrated to direct the alignment of neurites, mimicking the glial tubes that direct the 

migration on NPCs in vivo [122]. These aligned bundles could have potential applications for 

directing cells to sites of neurodegeneration in the brain. A recent exciting class of natural 

hydrogels used for neural tissue engineering are gellan gums. Gellan is a highly versatile 

backbone material amenable to various physical and chemical functionalisation [123]. RGD-

functionalised gellan gums have recently been 3D-printed in layers to mimic the human 

cortex [124]. Alternating cellular and acellular layers were composed to encourage cells to 

migrate between layers and form structures similar to that of the cortex (Figure 7.B). Cell 

viability was demonstrated after 5 days and some migration was observed (Figure 7.C) [124]. 
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Figure 6. 0.1 mg/ml Collagen I cylinders support astrocyte bundle formation. Collagen I 

(green), glial cell marker GFAP (red) and Hoechst nuclear counterstain (blue) [122]. Scale 

bars 100 m. Reproduced with permission © Elsevier. 

 

Figure 7. 3D-printed layered RGD-functionalised gellan gum structures for neural tissue 

engineering. A. A 3D graphics representation of a six-layered structure. B. A three-layered 

gellan gum construct (dyes indicating different layers). C. β-III Tubulin immunostaining of 

murine cortical neurons in layers 1 and 3 migrating into the acellular layer 2 (colour 

represents migration in the z-direction) [124]. Reproduced with permission © Elsevier. 

 

Some of the most recent remarkable examples of neural tissue engineering have come from 

the culture of neural cells using naturally derived hydrogels. Self-organized neural structures 

that resemble those present in an early developing brain (Figure 8), termed cerebral 

organoids, were created using MatrigelTM scaffolds and a spinning bioreactor. Neurospheres 

were derived from hiPSCs, then placed in MatrigelTM droplets. The droplets were then 

placed in a spinning bioreactor to yield an incredibly well-defined developing cortical-like 

structure [125]. This system has further been developed with the use of defined hydrogel 

scaffolds using hyaluronic acid-based materials as well as a defined culture medium [126]. 

Whilst organoid cultures can produce remarkable brain-like structures, they can suffer from 

hypoxia and areas of necrosis due to high cell density and lack of vasculature [112]. 
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Figure 8. MatrigelTM cultured cerebral organoid cortical tissue shows layering similar to the 

ventricular zone in natural tissue [127]. Neurons shown in green (TUJ1) and radial glial stem 

cells (RGs) in red (PAX6). Arrowheads indicate PAX6 positive RGs outside the ventricular 

zone. Image re-used with permission © Nature Publishing Group. 

 

3.1.2 Synthetic polymer hydrogels 

Synthetic hydrogels are made from polymers such as poly(ethylene glycol) (PEG), poly(vinyl 

alcohol), poly(lactic acid) (PLA) and poly(hydroxyethyl methacrylate) (PHEMA) to name a 

few [128]. Synthetic hydrogels are able to be synthesised with controlled physical (elasticity 

and degradability) and chemical (surface functionalisation) properties to tailor the material 

to specific applications. They are typically highly reproducible and simple to manufacture.  

Synthetic hydrogel scaffolds typically have two important features. Firstly, they are usually 

inert, but biodegradable. As cells grow, the scaffold degrades, making way for the cells to 

synthesise their own ECM and create their own scaffold [129, 130]. Secondly, they can 

contain immobilised biological components to better encourage natural cell-matrix 

interactions. PLA-PEG-dimethacrylate triblock macromer has been used to synthesise a 

degradable hydrogel for neural tissue engineering. By manipulating the degradation rate of 

the scaffold, embryonic rat forebrain cells were able to produce their own ECM at a rate 

similar to the degradation rate of the scaffold [130]. More recent examples of neural tissue 

engineering use ‘smart’ synthetic hydrogels and both primary and PSC-derived NSCs to 

generate neural tissue. Thermoresponsvie polyurethane hydrogels laden with primary adult 

mouse brain NSCs have been 3D printed, and shown to restore brain function in zebrafish 

with traumatic brain injury [78]. Self-assembling peptide hydrogels possess a fibrous 
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structure, similar to the native ECM. RADA16-IKVAV functionalised peptide has been shown 

to self-assemble into nanofibrous hydrogel scaffolds, enhancing the survival of encapsulated 

primary rat NSCs and reducing the formation of glial cells [76]. Self-assembling peptides 

have also been shown to undergo gelation at physiological temperatures, making them ideal 

scaffolds for injectable applications [131]. 

 

3.2 Solid porous scaffolds 

While hydrogels provide excellent scaffolds that mimic the natural ECM, they are limited in 

scale-up because of long term storage issues, stability and batch-to-batch variability. Highly 

porous solid scaffolds can be manufactured in a controlled and reproducible fashion, can be 

appropriately moulded, are inert in structure and have long term stability [132]. The 

mechanical stability of these scaffolds, along with their high porosity and pore 

interconnectivity make them ideal for highly interactive 3D cell cultures [55]. Porous 

scaffolds theoretically have some other key advantages. The high porosity of these scaffolds 

allows for deeper and more uniform nutrient transport and also allows cells to freely 

migrate throughout the structure without much resistance. The pores themselves can also 

limit the size of colonies, which when too large can cause cells to become necrotic [55]. The 

mechanical stability of solid porous scaffolds make them a more practical material for 

handling, which is difficult with soft hydrogels [112]. The key limitations of solid scaffolds 

however are, firstly, they are typically opaque and have poor light transmission properties, 

making in situ imaging difficult [133]. Secondly, recovering cells from the scaffold for 

analysis can be a difficult and tedious process [134]. Third, the Young’s modulus of many 
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solid porous scaffolds is quite different to that of CNS tissue (0.1-16 kPa)[33] and so these 

scaffolds may not provide realistic tissue and disease models. 

An array of techniques have been used to synthesise solid porous scaffolds, including salt 

leaching [135], phase separation [136], freeze drying [116], gas foaming [137], emulsion 

templating [138] and 3D printing [139]. The emulsion templating process has been shown to 

give good control over porosity, pore size and pore interconnect size, making it possible to 

produce highly porous structures with porosity up to around 90% [138]. When combined 

with ‘click-chemistry’ reactions and photocuring the preparation time of these porous 

polymer sponges is very short compared to other cell culture scaffolds [140], and can be 

used to polymerise emulsions of low stability.   

Solid porous scaffolds produced by the salt leaching process were shown to be able to 

culture primary mice neuronal cells with characteristics more akin to the in vivo 

environment when compared to 2D culture. Voltage gated calcium channel functionality, 

which is known to be exaggerated in 2D cultures, was shown to decrease (compared to 2D) 

and behave more like that of in vivo tissue when cultured on solid porous poly-l-lactic acid 

scaffolds [141].  

3D porous silk sponges are a recently discovered tissue engineering biomaterial that can be 

used in a range of formats including films, gels, sponges and mats [142]. Recently, silk 

sponges have been used in the 3D culture of primary rat cortical neurons. Carefully 

constructed silk-collagen composites have been used to create functional brain-like cortical 

tissue [143]. The compartmentalised structure of the silk-collagen scaffold (Figure 9) allows 

for spatial separation of neuronal cell bodies and neural projections, resemblant of the 

layered structure of the cerebral cortex, and grey and white matter [144]. 
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Figure 9. Silk sponges of diameter 12 mm are constructed with 2 mm collagen centres (left) 

[143]. The composite, when cultured with primary rat hippocampus neurons, resembles 

structures similar to the white and grey matter of the brain (right) [143]. Images reused with 

permission © National Academy of Science. 

 

3.3 Fibrous scaffolds 

Fibrous scaffolds, and particularly nanofibrous scaffolds, hold great promise as tissue 

engineering scaffolds as their topography most resembles that of natural human ECM [145]. 

A range of techniques exist for the synthesis of nanofibers, including electrospinning, self-

assembly, template synthesis and phase separation [146, 147]. Desirable properties of 

fibrous scaffolds include a high surface area-to-volume ratio and high porosity [146]. Fibrous 

scaffolds have been used in a range of tissue engineering applications including bone, 

cartilage, ligament, skeletal muscle, skin and many others. Like hydrogels, a range of both 

natural and synthetic polymers have been explored for use as fibrous scaffolds.  Electrospun 

fibrous scaffolds typically do not allow infiltration of cells deep into the scaffold, mainly due 

to the fibre diameter [148, 149]. Recent research has focussed on reducing the fibre 

diameter to achieve better cell infiltration, to give 3D, and not 2D, cell growth, which has 

been the case for electrospun fibrous scaffolds previously [56].  

Electrospun PLA fibrous scaffolds coated in electrically conductive polymers have been used 

for 3D neural progenitor cell culture. The scaffold was shown to support the attachment and 

migration of rat hippocampal neural progenitors, indicating biocompatibility [150]. Another 

example involved the culture of rat brain-derived NSCs on electrospun poly(ε-caprolactone) 
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scaffolds. Fibre surfaces were modified with an ethylenediamine coating, resulting in 

increased cell adherence [96]. Electrospun gelatin scaffolds were coated with decellularized 

rat brain ECM. The coating, which contains molecules such as glycosaminoglycans, collagen, 

laminin and fibronectin, was shown to induce the differentiation of mesenchymal stem cells 

to neural/glial precursor cells [151]. 

 

3.4 Acellular Scaffolds 

Acellular tissue engineering scaffolds are typically prepared by removing the cellular 

components of a tissue or whole organ via chemical, biological or mechanical means, to 

produce a material that is predominantly natural ECM [152]. Upon tissue culture or 

implantation the acellular scaffold typically degrades, making way for the natural ECM 

secreted by ingrowing cells [55]. Acellular scaffolds have advantages over other tissue 

engineering scaffolds: they have similar if not the same chemical and biological composition 

as natural ECM; they retain native ECM architecture and mechanical properties; and 

considerably reduce immunological complications associated with whole tissue transplants. 

Products incorporating acellular scaffolds including heart valves, small intestine submucosa 

and urinary bladder matrix have all been approved for human medical use [153]. However, 

as acellular scaffolds are typically allogenic or xenogeneic, there is potential for immune 

rejection for implanted scaffolds [154].  

Porcine brain tissue was successfully decellularized using sodium dodecyl sulphate 

detergent. The ECM was digested and turned into a liquid, and used as a cell culture coating 

for the culture of human iPSC-derived neurons. When compared with MatrigelTM coating, 

the brain matrix coating was shown to enhance primary and secondary dendrite formation 
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as well as increase synapsin expression, a marker of synapse formation. The digested liquid 

ECM material was also shown to self-assemble, forming a gel upon injection, indicating 

suitability as a tissue engineering scaffold for injection [155]. However, due to the animal 

origin of the material, clinical implementation could be difficult to achieve. 

3.5 Microfluidic Devices/Lab-on-a-chip systems 

Most tissue engineering models suffer from one important drawback, an inability to 

incorporate vascularization. This introduces a drastic disparity between tissue engineered 

models and in vivo tissue in terms of access to nutrients and waste diffusion channels. 

Microfluidic systems have the potential to address such issues with the introduction of small 

channels which introduce fluid flow, nutrient/waste gradients, medium perfusion and 

subsequent shear stress to otherwise static tissue culture systems [156]. Microfluidic 

devices also offer the aspect of spatial control of cells. This can be done with the use of 

membranes to separate or segregate cells or, more recently, hydrogels for three 

dimensional spatial control.  

A microfluidic device has been developed to prevent the spontaneous differentiation of 

NSCs, which can occur when the cells are provided with limited nutrients. The device, 

through a series of microchannels, supplies medium to the cells in a specifically controlled 

manner. The device was shown to harbour cultures of minimum spontaneous 

differentiation when compared with control experiments [104]. Other microfluidic devices 

have been engineered to investigate the influence of paracrine signalling on hNSC 

differentiation as seen in the brain. hNSCs confined in a 3D channel of collagen were flanked 

by channels of GDNF-overexpressing hMSCs, with signalling molecules able to diffuse 
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between the channels (Figure 10). The system yielded reduced glial differentiation and 

enhanced neuronal differentiation of hNSCs [106]. 

 

Figure 10. A microfluidic device specifically designed to mimic paracrine signalling that 

naturally occurs in the brain [106]. Reproduced with permission © Elsevier. 

 

Even more sophisticated systems have been developed in an attempt to mimic parts, 

regions and functions of the brain, in what are being called ‘brain-on-a-chip’ models. These 

models have the potential to be used to screen therapeutic agents, predict toxicity or study 

neurodevelopmental processes. Examples include models of functional blood-brain-barriers 

[157, 158], neuromuscular junctions [159] and neuronal circuitry. A recent interesting 

example involved the construction of a device to study the migratory patterns of hNPCs, 

which are important for understanding chemotaxis in the brain. Gradients of the chemokine 

CXCL12 were constructed to measure chemotactic response, and results revealed that a 

shallow chemotactic gradient best enhances hNPC chemotaxis [160]. Another recent brain-

on-a-chip example involved prediction of neural toxicity. A 3D co-culture of NPCs, 

mesenchymal stem cells, endothelial cells and microglia/macrophage precursors in a 

functionalised, degradable PEG hydrogel reportedly assembled into a 3D neural construct of 

neurons, glia and an interconnected vascular network. The construct was then used to 

screen toxic and non-toxic compounds with an impressive 90% prediction success rate in a 

blinded trial [107].  
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4. Scaffold modifications to support neural lineage differentiation 

Modifications can be made to tissue engineering scaffolds to increase their physiological 

relevance and provide a more favourable environment for tissue growth. Modifications of 

tissue engineering scaffolds can be broken down into three different categories: 

morphological and topographical; chemical and biological functionalization; and mechanical. 

Morphological changes such as topographical modifications include introducing roughness, 

grooves and patterns to scaffold surfaces. Scaffolds can be chemically modified to alter 

surface energy, induce surface charge, create reactive functional groups or reduce cell 

adhesion. Biological modifications can be made by attaching ECM proteins, peptide 

sequences, growth factors and other biomolecules that aid cell function. Finally mechanical 

properties can be manipulated to influence the attachment, differentiation and migration of 

certain cell types. 

 

4.1 Topography and morphology 

Directed cell growth and migration is fundamental for the development and repair of tissue. 

Consequently, directed growth of neurites is required for the regeneration of neural tissue 

in both central and peripheral nervous systems. By altering surface morphology and 

topography it has been demonstrated that it is possible to guide the growth and migration 

of neurites.  

Topographical cues such as grooves, ridges, pores and nodes can influence cell adhesion, 

migration, proliferation and differentiation [147]. The most heavily investigated surface 

morphology for neural cell guidance and migration are ridged/grooved surfaces. These 

surfaces are intended to guide axonal outgrowth of neurons for spinal cord regeneration. 
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Grooves of varying width and depth on a variety of different surfaces have been shown to 

induce alignment of neurons in certain directions and induce outgrowth on surfaces 

patterned with ECM or growth factor coatings [161-163].  

Nanofibrillar structures have also been shown to provide a means for neurite cell 

attachment and guidance as they somewhat mimic the extracellular environment and the 

topographical nature of tightly aligned neurite bundles [164]. Fibre dimensions have been 

shown to improve differentiation of rat hippocampal-derived adult neural stem cells into 

both neurons and glial cells, when compared to tissue culture polystyrene surfaces [165]. 

 

4.2 Mechanical Properties 

Various mechanical factors such as shear from fluid flow [166] and ECM elasticity [167] can 

affect stem cell differentiation in a process known as mechanotransduction. When designing 

a tissue engineering scaffold it is import to mimic, as closely as possible, the biomechanical 

environment of the in vivo tissue. Scaffold stiffness has been shown to affect the ability of 

neural precursor cells to attach, survive, proliferate and differentiate to neurons and glia on 

a range of different substrates.      

The modulus of mammalian brain tissue varies throughout the brain [40, 168], with age and 

development [169] and is species dependent. Studies using magnetic resonance imaging 

have determined human white and grey matter moduli to be 2.37 and 2.28 kPa respectively 

[168]. Other studies found that 16 month old bovine white and grey matter had a modulus 

of 1.9 and 1.4 kPa respectively [40]. Linear deformation experiments and computer 

simulations have found the Young’s modulus of swine brain to be 3.24 kPa [170]. This topic 

has previously been reviewed and has broadly classified the elastic modulus of brain tissue 
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to be in the range 0.1 - 16 kPa [33]. In order to engineer tissue as accurately as possible, it is 

important for scaffold mechanical properties to resemble those of natural tissue as much as 

possible. 

One of the most powerful ways in which a substrate’s mechanical properties can affect cell 

behaviour in 3D is through its impact on differentiation. Substrate stiffness has been shown 

to direct the differentiation of mesenchymal stem cells to definitive cells types on 

polyacrylamide gels of Young’s modulus values reflective of particular tissue types [171]. 

Adult mouse NSCs were shown to proliferate best, and express β-tubulin III (a marker 

indicative of neuronal differentiation), when encapsulated in alginate hydrogels of 183 Pa 

elastic modulus compared to stiffer materials of up to 19.7 kPa [172]. One of the most 

interesting examples of mechanotransduction is the ability of different stiffness substrates 

to affect the differentiation of NSCs to neuronal or glial cells. Slight variation in elastic 

modulus has been shown to affect differentiation - glial differentiation was observed on 

stiffer scaffolds and neuronal differentiation on slightly softer scaffolds. Cell culture on 

variable moduli interpenetrating polymer network (vmIPN) hydrogel surfaces indicated that 

softer gels (100-500 Pa) favour neuronal differentiation and harder gels (1-10 kPa) favour 

glial differentiation [173]. Similar results were found with type I collagen-hyaluronic acid 

hydrogels with varying stiffness, shown to induce neuronal differentiation for weaker 

scaffolds of 1 kPa modulus and glial differentiation for stiffer scaffolds of 10 kPa modulus 

[174]. Substrate stiffness has also been shown to influence cell attachment and proliferation. 

Attachment of rat NPCs on gelatin-based hydrogels was shown to be maximised for softer 

surfaces of 2 kPa stiffness compared to stiffer surfaces of the same material up to 35 kPa, 

though expansion of cells was shown not to be affected by substrate stiffness [175]. 
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Materials softer than 100 Pa were shown to inhibit NSC dispersion and attachment 

indicating materials softer than brain tissue can also be detrimental to cell culture [173]. 

 

4.3 Surface Chemistry 

The presence of basement membrane proteins such as collagen IV, laminin, fibronectin and 

others in 3D scaffolds is essential for the growth and adhesion of particular mammalian cell 

types. Human PSCs are extremely reliant on the extracellular environment for survival and 

for differentiation into particular cell types [176]. In an attempt to mimic the neural stem 

cell niche, tissue engineers are incorporating biological molecules onto and within scaffolds 

to provide a more realistic environment that can aid neural cell growth and differentiation. 

The most common form of scaffold surface functionalization is the attachment of cell 

adhesion molecules. These molecules are typically short peptide binding motif sequences of 

ECM proteins such as collagen, laminin, fibronectin and vitronectin. The advantage of short 

peptide sequences over whole proteins is that they can be anchored to a surface, present 

the active binding site in the desired orientation and provide a high concentration of active 

binding sites to adhesion receptors [177, 178]. Some of the most commonly used short 

peptide sequences for human neural cell attachment are RGD [179-181], IKVAV [117, 182, 

183] and YIGSR [120, 184-186].    

The RGD sequence (Arg-Gly-Asp) [187] is one of the most physiologically ubiquitous binding 

motifs, and is present in adhesive proteins such as fibronectin, vitronectin, laminin and 

collagen I [14]. It is also the most widely studied adhesive peptide in the biomaterial field 

[177]. RGD is highly effective at promoting attachment of numerous cell types including 

hPSCs [177, 188]. RGD has been used as a purely adsorbed peptide and a chemically bound 
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peptide. RGD is recognized as a primary sequence by integrin receptors, which makes it 

robust, maintaining conformation throughout processing and sterilization [177]. RGD has 

been attached to the surface of many biomaterials and been shown to be successful in the 

culture and maintenance of mesenchymal stem cells [179-181]. However, its ability to 

provide continued support for these cultures over a long term has been limited [189]. This 

could possibly be due to the low affinity of linear RGD peptides, providing insufficiently 

strong adhesion [189]. Conformationally restricted RGD, in particular cyclic-RGD, increases 

integrin binding affinity and cell attachment [189, 190].  

For the differentiation and maintenance of neural stem cells and neural cells in culture, the 

most widely used cell attachment molecule is laminin [38, 191], the primary component of 

the basement membrane in the brain. The IKVAV sequence (Ile-Lys-Val-Ala-Val) has been 

identified as an active site of laminin for cell adhesion, migration and neurite outgrowth 

[192]. IKVAV is specifically located on the α1 chain of laminin-1. Variations of the IKVAV 

peptide have been chemically bound to the surfaces of PEG hydrogels [182], PHEMA 

hydrogels [183] and collagen matrices [117] to varying degrees of success. Interestingly, it 

was found that immobilising an IKVAV peptide at each end in a PEG hydrogel produced a 

conformationally restricted, cyclic version of the peptide, similar to cyclic RGD. This novel 

cyclic IKVAV peptide outperformed the linear laminin IKVAV in attachment, proliferation, 

differentiation and migration of NSCs [182]. 

A less commonly studied laminin peptide is YIGSR (Tyr-Ile-Gly-Ser-Arg). Like IKVAV, YIGSR is 

an active laminin peptide, located on the β1 chain [193]. YIGSR-functionalized scaffolds have 

been shown to have similar cellular effects as laminin-coated and IKVAV-functionalised 

scaffolds [120, 184-186]. 
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Other biological molecules such as growth factors have been identified as surface 

functionalization molecules. By immobilizing molecules such as growth factors on surfaces, 

their activity is prolonged, as their attachment prevents endocytosis [194]. Molecules such 

as bFGF and EGF have been covalently attached to surfaces to promote proliferation and 

control migration of embryonic stem cells and neural stem cells [195-197]. In terms of aiding 

neural cell culture, growth factors such as brain-derived neurotrophic factor (BDNF), which 

promotes survival of cortical neurons [198], and nerve growth factor (NGF), which is 

involved in maintenance and proliferation of neurons [199], have been attached to 

hydrogels [200], macroporous polymers [201] and nanofibrous scaffolds [202], and in the 

majority of cases shown to enhance neuronal survival. 

 

5. Application of 3D in vitro neural lineage cell culture in disease modelling 

Neurodegenerative diseases are a world-wide leading cause of death, yet in many cases, 

limited cures exist for these debilitating disorders. Current treatments can alleviate some 

symptoms, but typically do not stop disease progression. The lack of therapies for 

neurodegenerative diseases is attributed to poor results from clinical trials, owing to the 

complexity of these disease states and lack of knowledge of the CNS. This has led to a 

decline in the funding of such endeavours, which poses huge future problems for aging 

populations [203]. Accurate and predictive disease models are pivotal to finding treatments 

to neurodegenerative diseases.  

Neurodegenerative diseases include Alzheimer’s disease and other dementias, motor 

neuron diseases, Huntington’s disease, Parkinson’s disease and others. They are typically 

characterised by the loss of function, then death of specific neuronal subtypes. 
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Neurodegenerative diseases can be caused by genetic, epigenetic or environmental factors. 

Current models of these diseases rely on humanized transgenic animals which can give poor 

or misleading outcomes when screening for treatments [46]. 

The ease with which induced pluripotent stem cells (iPSCs) can now be generated from 

patient and normal human somatic cells has created new approaches to model diseases. 

HiPSCs have the advantage in that they provide a model with a completely human genome, 

bypass ethical concerns associated with embryonic stem cells, provide an unlimited supply 

and avoid cross-species issues with animal-derived products.  

Somatic cells can be obtained from a patient with a particular neurological disease 

phenotype and used to generate hiPSC-derived neurons and glial cells of that particular 

phenotype. Previous methods of studying mutated ES cells, rodent brains and post-mortem 

brain tissue has had little success in identifying new therapeutic targets. HiPSC-derived 

neurons and glial cells offer a way of studying live, developing, disease-relevant cell types. 

While it is still a relatively new concept, hiPSC-derived neural cells of particular neurological 

disease types have been created from the somatic cells of patients with particular diseases 

such as dysautonomia [204], Rett syndrome [205, 206], Parkinson’s disease [207], 

Huntington’s disease [208], epilepsy [209] and others. For a review of neurological disease 

models using patient-derived iPSCs the reader is directed to the work of Avior et al [210].  

Upon first thought it may seem far-fetched to model these diseases, which can take 50-70 

years to appear symptomatically in a patient, in reprogrammed stem cell cultures only a few 

weeks old. Particular neurodegenerative diseases such as Huntington’s disease can express 

genetic mutations even before birth [211], however most neurodegenerative disorders do 

not have known early genetic mutations. For this reason, research is being carried out into 
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the premature aging of iPSC-derived neural cells by increasing oxidative stress through 

chemical treatment [207] and the addition of progerin [212], which has been shown to 

accelerate the aging of iPSC-derived dopaminergic neurons in Parkinson’s disease studies 

[213].   

There are however some concerns or challenges associated with using PSCs to model 

diseases. PSCs are used most readily to model monogenic early onset disorders, and are less 

useful, as discussed above, at modelling complex disorders with late onset symptoms [210]. 

The potential to model complex disorders most likely exists in patient-derived iPSCs rather 

than ESCs. When modelling cell-specific disorders it is necessary to have reliable, robust and 

reproducible differentiation techniques, which do not yet exist for some cell types. Non-cell 

autonomous effects have been identified as factors in numerous conditions [214]. On this 

basis there is a need to form complex co-culture systems of multiple target cells types. 

Control PSC cell lines run alongside assays also have shown potential to develop mutations 

over extended culture periods [215]. ESCs and iPSCs used to generate target neural lineage 

cell types for study have the potential to contaminate populations with residual PSCs, which 

have the potential to introduce non-target cell types into assays [214]. Also, comparisons of 

disease-derived iPSCs with healthy control cell lines can be a challenge due to transcriptome 

variability between individuals [216]. When comparing the differentiation of iPSCs and ESCs 

to neuroepithelial cell types, iPSCs were shown to produce the same cell types with the 

same transcriptional network but with significantly reduced efficiency and increased 

variability [217]. The differentiation efficiency of iPSCs is possibly affected by the viral 

reprogramming techniques with which they are generated[218]. While there are challenges 

associated with the use of PSCs and their derivatives for the modelling of diseases, none 

look to be insurmountable with multiple research teams currently investigating solutions.  
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6. Outlook 

6.1 Disease Modelling 

The next logical step in neurological disease modelling is co-cultures of different types of 

iPSC-derived neurons and glia, and generating spatially accurate three-dimensional cultures. 

Only a few co-cultures of hPSC-derived neurons and astrocytes have been reported [219, 

220]. The development of 3D cultures has demonstrated the ability of hPSCs to self-organize 

during differentiation [127, 221, 222], and are beginning to be used to model certain 

neurological conditions [223] such as Zika virus [224, 225], microcephaly [127] and 

Alzheimer’s Disease [226]. 

 

6.2 Drug Screening 

Drug development is a long, tedious and expensive process with a path to market typically 

taking up to 20 years. It is divided into five phases: discovery and development, preclinical 

research, clinical research, administrative review and post-market safety monitoring [227]. 

The progression of new drug candidates from therapeutic discovery to clinical use is 

currently at an unacceptably low rate [228] and this can largely be attributed to poor 

pharmacological and toxicological data obtained from preclinical 2D in vitro cell-based and 

in vivo animal-based assays [229]. Unexpected toxicity is one of the main factors for post-

marketing product withdrawals, accounting for a staggering 90% of market withdrawals 

from 1992-2002 [230], and has been an area of investigation that has seen little 

improvement over the past 20 years. This extremely high failure rate highlights the need for 

improved models for preclinical drug toxicity screening.  
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Preclinical research is typically where 2D cell cultures or animal models are used to test 

efficacy and toxicity of new drug candidates. Both 2D cell culture [1] and animal models [2] 

are limited in their ability to mimic human physiology. Furthermore, immortalized cell lines 

with genetic modifications that are typically used in 2D cell culture models [231] raise 

further questions of physiological accuracy. HiPSCs generated using non-integrative 

strategies and cultured in 3D could be used to reduce the level of doubt associated with 

genetically modified cells [232], and may in the future lead to more reliable in vitro toxicity 

data. 

 

6.3 Surgical Implants 

Secondary injury that comes from trauma or stroke causes permanent damage to the brain, 

as mature axons cannot be repaired or regenerated [233]. These injuries induce the 

proliferation of astrocytes, fibroblasts and oligodendrocyte precursors, which form glial scar. 

Inhibitory molecules located within the glial scar such as chondroitin sulphate proteoglycans 

further prevent neurogenesis [234].  

After brain trauma, widespread neuronal cell death typically occurs and a cavity forms in the 

brain [235]. An implant that induces the formation of new functional neural tissue is 

required for repair. Tissue engineering scaffolds offer a possible way to restore function to 

the brain. Scaffolds can be bare [118], or possess molecules that induce regeneration [119]. 

They could contain a mixture of neural cells ready to network with the existing brain tissue, 

or they could be seeded with neural stem cells, which upon implantation could differentiate 

and form new neuronal and glial tissue. Although there is promising research being 

undertaken in the area of 3D neural tissue engineering, as highlighted above, there are 
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currently no FDA approved cell-based neural implant products for cellular or tissue therapy 

[236]. 

 

7. Conclusions 

The need for more accurate in vitro models for tissues of the human nervous system is 

clearly highlighted by the current lack of treatments for neurological disorders. A variety of 

materials with various modifications have been investigated for the 3D culture of neural 

tissue, but it is clear that even the most advanced materials struggle to mimic the 

complexity of natural tissue. This is reflected in the lack of 3D neural tissue products on the 

market. However, giant strides have been made with organoid and hydrogel cultures that 

have produced tissue with complexity that has not been seen previously in vitro. These 

cultures do however suffer from scale-up issues as they have poor nutrient diffusion abilities 

due to lack of vascularisation. There are still developments to be made before 3D in vitro 

functional neural tissue cultures can be used for disease modelling, drug screening and 

surgical implantations. 
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