1,381 research outputs found
PROGRESS IN THE STUDY OF THE γ-DECAY OF THE GIANT DIPOLE RESONANCE IN HOT NUCLEI
The problem of the damping of the Giant Dipole Resonance (GDR) at finite temperature at T>2 MeV is discussed here. The experimental results are based on fusion evaporation reactions. The most recent results on the mass region A = 132 ( Ce isotopes) obtained in exclusive measurements are compared with the existing results on the A = 110–120 region ( Sn isotopes). The comparison with the theoretical predictions based on thermal shape fluctuations is also discussed. The GDR width is found to increase also in the region T>2 MeV and this is accounted by the combined effect of the increase of the compound nucleus width (smaller lifetime) and to the increase of the average deformation of the nucleus
Pulse distributions and tracking in segmented detectors
Abstract A study of the performance of a cylindrical HPGe detector segmented in 25 segments is presented. It is based on simulations made with the computer code GEANT and focuses on the reconstruction of a γ-ray path. The effects of the segmentation are initially discussed in terms of Doppler correction. The role of the pulse shape analysis and its effects on tracking algorithms are discussed as a function of the capability to reconstruct a γ-ray path when multiple signals (direct and induced) are present in a single segment. It is found that it is critical to identify correctly at least two signals in a segment in order to have a reasonable efficiency and Compton suppression in the spectra and to make a good use of this type of detectors
Evidence for the Jacobi shape transition in hot 46Ti
The gamma-rays from the decay of the GDR in 46Ti compound nucleus formed in
the 18O+28Si reaction at bombarding energy 105 MeV have been measured in an
experiment using a setup consisting of the combined EUROBALL IV, HECTOR and
EUCLIDES arrays. A comparison of the extracted GDR lineshape data with the
predictions of the thermal shape fluctuation model shows evidence for the
Jacobi shape transition in hot 46Ti. In addition to the previously found broad
structure in the GDR lineshape region at 18-27 MeV caused by large
deformations, the presence of a low energy component (around 10 MeV), due to
the Coriolis splitting in prolate well deformed shape, has been identified for
the first time.Comment: 8 pages, 4 figures, proceedings of the COMEX1 conference, June 2003,
Paris; to be published in Nucl. Phys.
GDR Feeding of the Highly-Deformed Band in 42Ca
The gamma-ray spectra from the decay of the GDR in the compound nucleus
reaction 18O+28Si at bombarding energy of 105 MeV have been measured in an
experiment using the EUROBALL IV and HECTOR arrays. The obtained experimental
GDR strength function is highly fragmented, with a low energy (10 MeV)
component, indicating a presence of a large deformation and Coriolis effects.
In addition, the preferential feeding of the highly-deformed band in 42Ca by
this GDR low energy component is observed.Comment: 6 pages, 2 figures, Proceedings of the Zakopane2004 Symposium, to be
published in Acta Phys. Pol. B36 (2005
Search for E1 strength in 62,64 Fe around the threshold
The structure and nature of the pygmy dipole resonance (PDR) states below and above the neutron threshold is a recent open problem, particularly in exotic, neutron rich nuclei. Present experimental observations give only limited information on this subject. New experiments using different methods are needed. A recent measurement at the GSI laboratories on 62,64Fe with the PRESPEC (2014) setup, following a past experiment with the RISING (2005) setup on 68Ni, will contribute to solve the open questions. The setup located at GSI consists of the segmented HPGe detector array AGATA, scintillators (HECTOR), an Energy Loss / Total Energy time of flight measuring detector system called LYCCA and the fragment separator (FRS) apparatus. The experiment is based on relativistic Coulomb excitation together with the detection of the incoming and outgoing particles event by event. The detection of the produced y-rays in the reactions, provides insight into the problem of the electric dipole response and E1 strength distribution around particle separation threshold
Geometrical features of (4+d) gravity
We obtain the vacuum spherical symmetric solutions for the gravitational
sector of a (4+d)-dimensional Kaluza-Klein theory. In the various regions of
parameter space, the solutions can describe either naked singularities or
black-holes or wormholes. We also derive, by performing a conformal rescaling,
the corresponding picture in the four-dimensional space-time.Comment: 10 pages, LateX2e, to appear in Phys.Rev.
Characterization of Large Volume 3.5 x 8 inches LaBr3:Ce Detectors
The properties of large volume cylindrical 3.5 x 8 inches (89 mm x 203 mm)
LaBr3:Ce scintillation detectors coupled to the Hamamatsu R10233-100SEL
photo-multiplier tube were investigated. These crystals are among the largest
ones ever produced and still need to be fully characterized to determine how
these detectors can be utilized and in which applications. We tested the
detectors using monochromatic gamma-ray sources and in-beam reactions producing
gamma rays up to 22.6 MeV; we acquired PMT signal pulses and calculated
detector energy resolution and response linearity as a function of gamma-ray
energy. Two different voltage dividers were coupled to the Hamamatsu
R10233-100SEL PMT: the Hamamatsu E1198-26, based on straightforward resistive
network design, and the LABRVD, specifically designed for our large volume
LaBr3:Ce scintillation detectors, which also includes active semiconductor
devices. Because of the extremely high light yield of LaBr3:Ce crystals we
observed that, depending on the choice of PMT, voltage divider and applied
voltage, some significant deviation from the ideally proportional response of
the detector and some pulse shape deformation appear. In addition, crystal
non-homogeneities and PMT gain drifts affect the (measured) energy resolution
especially in case of high-energy gamma rays. We also measured the time
resolution of detectors with different sizes (from 1x1 inches up to 3.5x8
inches), correlating the results with both the intrinsic properties of PMTs and
GEANT simulations of the scintillation light collection process. The detector
absolute full energy efficiency was measured and simulated up to gamma-rays of
30 Me
A parametrization of the growth index of matter perturbations in various Dark Energy models and observational prospects using a Euclid-like survey
We provide exact solutions to the cosmological matter perturbation equation
in a homogeneous FLRW universe with a vacuum energy that can be parametrized by
a constant equation of state parameter and a very accurate approximation
for the Ansatz . We compute the growth index \gamma=\log
f(a)/\log\Om_m(a), and its redshift dependence, using the exact and
approximate solutions in terms of Legendre polynomials and show that it can be
parametrized as in most cases. We then
compare four different types of dark energy (DE) models: CDM, DGP,
and a LTB-large-void model, which have very different behaviors at
z\gsim1. This allows us to study the possibility to differentiate between
different DE alternatives using wide and deep surveys like Euclid, which will
measure both photometric and spectroscopic redshifts for several hundreds of
millions of galaxies up to redshift . We do a Fisher matrix analysis
for the prospects of differentiating among the different DE models in terms of
the growth index, taken as a given function of redshift or with a principal
component analysis, with a value for each redshift bin for a Euclid-like
survey. We use as observables the complete and marginalized power spectrum of
galaxies and the Weak Lensing (WL) power spectrum. We find that, using
, one can reach (2%, 5%) errors in , and (4%, 12%) errors in
, while using WL we get errors at least twice as large.
These estimates allow us to differentiate easily between DGP, models and
CDM, while it would be more difficult to distinguish the latter from a
variable equation of state parameter or LTB models using only the growth
index.}Comment: 29 pages, 7 figures, 6 table
Strong Deformation Effects in Hot Rotating 46Ti
Exotic-deformation effects in 46Ti nucleus were investigated by analysing the
high-energy gamma-ray and the alpha-particle energy spectra. One of the
experiments was performed using the charged-particle multi-detector array ICARE
together with a large volume (4"x4") BGO detector. The study focused on
simultaneous measurement of light charged particles and gamma-rays in
coincidence with the evaporation residues. The experimental data show a
signature of very large deformations of the compound nucleus in the Jacobi
transition region at the highest spins. These results are compared to data from
previous experiments performed with the HECTOR array coupled to the EUROBALL
array, where it was found that the GDR strength function is highly fragmented,
strongly indicating a presence of nuclei with very large deformation.Comment: 10 pages, 6 figures, Proceedings of the Zakopane Conference on
Nuclear Physics, to be published in Acta Phys. Pol. B (2007
- …