PROCEEDINGS

OF SCIENCE

Measuring redshift-space distortions with future
SKA surveys

Alvise Raccanelli'>3, Philip Bull*, Stefano Camera’°, David Bacon’, Chris Blake?,
Olivier Doré**, Pedro Ferreira’, Roy Maartens®’, Mario Santos’'!*%, Matteo Viel'!!2,
Gong-bo Zhao'3”’

! Department of Physics & Astronomy, Johns Hopkins University, 3400 N. Charles St.,

Baltimore, MD 21218, USA

2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA 91109, USA

3California Institute of Technology, Pasadena CA 91125, USA

4Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo,

Norway

3 Physics Department, University of the Western Cape, Cape Town 7535, South Africa

SCENTRA, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal

7 Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK

8 Centre for Astrophysics & Supercomputing, Swinburne University of Technology, PO Box 218,
Hawthorn, VIC 3122, Australia

9Astrophysics, University of Oxford, DWB, Keble Road, Oxford OX1 3RH, UK

10SKA SA, 4rd Floor, The Park, Park Road, Pinelands, 7405, South Africa

YINAF - Osservatorio Astronomico di Trieste, Via Tiepolo 11, 34143, Trieste, Italy

12INFN sez. Trieste, Via Valerio 2, 34127 Trieste, Italy

B3 National Astronomy Observatories, Chinese Academy of Science, Beijing, 100012, P.R.China

E-mail: alviseljhu.edu

The peculiar motion of galaxies can be a particularly sensitive probe of gravitational collapse. As
such, it can be used to measure the dynamics of dark matter and dark energy as well the nature
of the gravitational laws at play on cosmological scales. Peculiar motions manifest themselves as
an overall anisotropy in the measured clustering signal as a function of the angle to the line-of-
sight, known as redshift-space distortion (RSD). Limiting factors in this measurement include our
ability to model non-linear galaxy motions on small scales and the complexities of galaxy bias.
The anisotropy in the measured clustering pattern in redshift-space is also driven by the unknown
distance factors at the redshift in question, the Alcock-Paczynski distortion. This weakens growth
rate measurements, but permits an extra geometric probe of the Hubble expansion rate. In this
short chapter we will briefly describe the scientific background to the RSD technique, and forecast
the potential of the SKA phase 1 and the SKA2 to measure the growth rate using both galaxy
catalogues and intensity mapping, assessing their competitiveness with current and future optical
galaxy surveys.
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1. Introduction

One of the biggest challenges of modern cosmology is to understand the accelerated expansion
rate of the Universe. A number of proposals have been put forward, the most notable of which are
the presence of dark energy or, alternatively, a modification to general relativity on cosmological
scales. Radio surveys have been used to test these different hypotheses in the past, mainly using
the integrated Sachs-Wolfe effect and the galaxy angular power spectrum (see e.g. Nolta et al.
2004; Raccanelli et al. 2008; Xia et al. 2010). With the new generation of radio arrays such as
LOFAR (Rottgering et al. 2011) and ASKAP (Johnston et al. 2008), and in preparation to the SKA,
there is a growing interest in understanding how future radio surveys can constrain cosmological
parameters, and maybe discriminate between the two scenarios described above. Some examples of
these investigations can be found in Raccanelli et al. (2012); Camera et al. (2012); Raccanelli et al.
(2015). Here we focus on how the proposed SKA surveys will be able to provide measurements of
Redshift-Space Distortions (RSD), allowing in this way measurements of cosmological parameters,
and in particular the growth of structures.

In this chapter, we will briefly review the physics of Redshift-Space Distortions and how we
model their effect on the power spectrum. We investigate potential issues and systematics and then
we present forecasts for the measurements we can perform using the different proposed SKA sur-
veys, focusing in particular on models describing the growth of structures. In two complementary
chapters (Bull et al. 2014a; Camera et al. 2014) are presented forecasts for the BAO and large-
scale measurements, investigating how those can constrain dark energy models and primordial
non-Gaussianity.

2. The physics of the growth rate

The presence of a dark energy component in the energy-density of the Universe (or the fact
that our theory of gravity needs to be modified on large scales), modifies the gravitational growth of
large-scale structures. The large-scale structure we see traced by the distribution of galaxies arises
through gravitational instability, which amplifies primordial fluctuations that originated in the very
early Universe. The rate at which structure grows from small perturbations offers a key discriminant
between cosmological models, as different models predict measurable differences in the growth
rate of large-scale structure with cosmic time (e.g. Jain & Zhang 2008; Song & Percival 2008;
Song & Koyama 2008). For instance, dark energy models in which general relativity is unmodified
predict different large-scale structure formation compared to Modified Gravity models with the
same background expansion (e.g. Dvali et al. 2000; Carroll et al. 2004; Brans 2000; Yamamoto
et al. 2008, 2010).

The growth rate, f(a), as a function of scale factor a is defined as:

dlnd
fla) = A00ta).

where 8y(a) is the amplitude of the growing mode of matter density perturbations. In the confor-

2.1

mal Newtonian gauge the evolution equations for the velocity potential 6 and &y, are:
Su = 3(D+ ) — [IK2+3(H* — )] Oy, (2.2)
Oy = — A0y +V. (2.3)
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We use dots to denote derivatives with respect to conformal time, and our conventions for the metric
potentials are displayed in the perturbed line element: ds* =a?(1) [—(142%¥)dn?* + (1 — 2®@)dx'dx;]
which satisfy (in the quasi-static regime) the field equations: 2V2® = ka? u(a, k) pyAy and @ /¥ =
¥(a, k). The parameters i and y encapsulate all the information about deviation from GR for metric
theories of gravity (Baker et al. 2011).

Again, in the quasi static regime, the evolution equation for &y, simplifies to:

Sy + A5y — %%”ZQMé&W =0, (2.4)

where we have defined £ = p/y (which is equal to 1 in GR). Using x = Ina as the independent
variable we have:

y AN\ .3
Sy + (1 +%p) Sy — EQM&‘SM =0. (2.5)

Primes denote derivatives with respect to x. We can convert this into an evolution equation for f :

f+q@x) f+ 2 =3Qué, (2.6)

where g(x) = $[1 =3 ®(x)(1 — Qu(x))]. The effect of the expansion rate (via g(x)) and modified
gravity (via &) are explicit in the time evolution of f.

3. Redshift Space Distortions

Measurements of RSD played an important role in developing the current cosmological model,
and it will be a fundamental part of several future cosmological experiments, because observations
of RSD in galaxy surveys are a powerful way to study the pattern and the evolution of the Large
Scale Structure of the Universe (Kaiser 1987; Hamilton 1997), as they provide constraints on the
amplitude of peculiar velocities induced by structure growth, thereby allowing tests of the theory
of gravity governing the growth of those perturbations. RSD have been measured using techniques
based on both correlation functions and power-spectra (e.g. Peacock et al. 2001; Percival et al.
2004; Tegmark et al. 2006; Guzzo et al. 2008; Samushia et al. 2012; Samushia et al. 2013; Reid
et al. 2010; Reid et al. 2012; Sanchez et al. 2012; Blake et al. 2010, 2011, 2012); the most recent
analyses come from BOSS DR11 and GAMA (Samushia et al. 2014; Blake et al. 2013).

3.1 Formalism

RSD arise because we infer galaxy distances from their redshifts using the Hubble law: the
radial component of the peculiar velocity of individual galaxies will contribute to each redshift and
will be misinterpreted as being cosmological in origin, thus altering our estimate of the distances
to them. The correction due to peculiar velocities can be used to set constraints on cosmological
models and parameters, as it depends on the coherent large scale infall of matter toward overdense
regions. The relation between the redshift-space position s and real-space position r is:

s(r) =r+v,(r)t, (3.1)
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where v, is the velocity in the radial direction.

The Redshift-Space Distortions (RSD) corrections come from the fact that the real-space posi-
tion of a source in the radial direction in modified by peculiar velocities due to local overdensities;
this effect can be modeled as (Kaiser 1987; Hamilton 1997):

(k) = (1+Bu?) 8’ (k), (32)
where, in the linear regime, f3 is the quantity that solves the linearized continuity equation:
BS+V-v=0. (3.3)

Here B = f/b, where b is the bias relating the visible to the underlying matter distribution (see
Section 3.3 for more details on it).

For this reason, measuring f from RSD allows us to set constraints on cosmological models
and parameters.

3.2 The power spectrum

The matter power spectrum depends on a variety of cosmological parameters, and for this
reason its measurement has been used (together with its Fourier transform, the correlation function)
to constrain e.g. dark energy parameters (Samushia et al. 2012), models of gravity (Raccanelli et al.
2013), neutrino mass (de Putter et al. 2012; Zhao et al. 2012), dark matter models (Cyr-Racine et al.
2014; Dvorkin et al. 2014), the growth of structures (Samushia et al. 2013; Reid et al. 2012), and
non-Gaussianity (Ross et al. 2013).

We define the power spectrum as:

Pi(k,,2) = [b(2) + F(@)1?) Pyk2) + Poner () (3.4)

where the superscripts " and ¢ indicate real and redshift-space, respectively, and the subscripts ,,, and
¢ stands for matter and galaxies; p is the angle with the line of sight. The shot noise contribution
is taken to be:

1
w .

The standard analysis of RSD makes use of the so-called Kaiser formalism (Equation 3.4),

Pspor (Z) = (35)

that relies on several simplifying assumptions, including considering only the linear regime and
the distant observer approximation; in Section 3.4 we briefly mention some possible extensions of
this model. In this Chapter we will make use of the Kaiser formula, but for a detailed data analysis
some further investigations will be needed.

3.3 Bias

While the distribution of galaxies is the observed quantity, the cosmological model directly
predicts the statistical distribution of (dark) matter. The simplest assumption is that the galaxy
distribution is a biased version of the underlying matter field, the so-called linear bias model, at
position x:

Sgalaxies (X) =b 5matter (X) s (3.6)
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with b a constant bias factor independent of a given smoothing scale R over which the density
fields are calculated. This model is motivated by the fact that rare peaks in the density field (e.g.
clusters of galaxies) have to be more strongly clustered (i.e. biased) than matter itself (e.g. Kaiser
1984). This is a simplifying assumption and the relationship between galaxies and matter is more
complex: in fact, clustering properties of galaxies do depend on galaxies’ intrinsic features. For
example the relation could be scale-dependent, nonlinear, stochastic, non-local, a function of the
particular sample of galaxies chosen, a function of cosmic time or dependent on many other phys-
ical quantities (such as the gas temperature, environment, merging history, etc.). Thus, the above
equation can be generalized to a more complex form:

6galaxies (X) = f((smatter(x) + 8) s 3.7

with € embedding all the dependencies on physical quantities other than dark matter density.

Currently, analytical efforts to model the bias are first attempting to model the halo-matter
bias by relying on: the peak background split formalism in a coarse grained perturbation theory
framework (e.g. Schmidt et al. 2013, and references therein); the excursion set approach also for
non gaussian initial conditions as in Musso et al. (2012); perturbation theories (Bernardeau et al.
2001). Particular emphasis is also put on unveiling the scale dependence of the bias, out to the
largest scales, that can be a powerful probe for testing initial conditions and/or the nature of gravity
and it has been recently shown that also in the standard cosmological model (ACDM) the halo
bias is scale dependent due to general relativitistic effects and not only to non-gaussianities (e.g.
Baldauf et al. 2011).

A comprehensive analysis of halo bias is presented in Smith et al. (2006) by comparing the
results of N-body simulations with semi-analytical prescriptions based on perturbation theory and
the halo model, also relying on the cross-spectrum between matter and haloes. In the work above,
it is shown that the non-linearities of the bias are determined not only by the non-linear evolution of
the power spectrum but also by the fact that haloes of different masses are biased in a different way.
In a recent study based on N-body simulations complemented by a galaxy formation model, Crocce
et al. (2013) found a nearly scale independent bias at the level of ~ 2 —5 % at scales larger than 20
Mpc/h for a mock Luminous Red Galaxies sample.

Overall, simulations show that on scales larger than ~ 30 Mpc/h the simplest linear parame-
terization works reasonably well, so for the purposes of this Chapter, we will assume the bias to
be linear and constant at the scales of interests for SKA forecasts as in Equation 3.6; however, this
assumption should be carefully tested in the future.

3.4 Beyond the Kaiser model

Equation 3.4 is valid only on linear scales, assumes the plane-parallel approximation and is
derived using Newtonian physics; this approximation is valid when considering pair separations in
a limited range of scales, large enough to avoid non-linear effect (i.e. = 30 Mpc) and are relatively
small (up to ~ 200 Mpc). If one wants to extend analyses of RSD to smaller and larger scales,
there are modifications to the standard formalism to take into account.
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3.4.1 Non-linearities

Within dark matter haloes, peculiar velocities of galaxies are highly non-linear, and these
velocities can induce RSD that are larger than the real-space distance between galaxies within the
halo. For this reason, on small scales we observe the so-called Fingers of God (FOG) effect —
strong elongation of structures along the line of sight (Jackson 1972). This results in a damping
of the power spectrum on small scales compared to the predictions of the linear model, and is
usually modeled by multiplying the linear power-spectrum by a function F(o,,k, ), where o, is
the average velocity dispersion of galaxies within the relevant haloes.

Modeling of non-linearities has been investigated numerous times (e.g. Scoccimarro 2004;
Taruya et al. 2009, 2010; Reid et al. 2010; Anselmi et al. 2010; Anselmi & Pietroni 2012; Kwan
et al. 2011; Neyrinck et al. 2009, 2011; Jennings 2012; Carron & Szapudi 2013).

In this Chapter we look only at linear scales; extensions to the quasi- and non- linear regimes
will help giving more constraining power, but they require investigations that are beyond the scope
of this paper.

3.4.2 Large scale effects

When considering wide surveys and galaxy pairs with large separation, a more precise analysis
involving wide-angle and GR corrections should be used (see e.g. Szalay et al. 1997; Matsubara
1999; Szapudi 2004; Papai & Szapudi 2008; Raccanelli et al. 2010; Samushia et al. 2012; Monta-
nari & Durrer 2012; Bertacca et al. 2012; Raccanelli et al. 2013; Raccanelli et al. 2013a)). More-
over, on very large scales, the modeling for the power spectrum needs to take into account General
Relativity (GR) effects general relativistic corrections will be important (see e.g. Yoo 2010; Bonvin
& Durrer 2011; Challinor & Lewis 2011; Yoo et al. 2012; Jeong et al. 2011; Bertacca et al. 2012;
Raccanelli et al. 2013b; Dio et al. 2014).

However, including wide-angle and GR corrections in the power spectrum is beyond the scope
of this Chapter. A mode detailed analysis of large scale effects for the SKA is carried out in the
SKA Chapter “Cosmology on the Largest Scales” (Camera et al. 2014).

3.5 Alcock-Paczynski Effect

Positions of galaxies are given in terms of angular positions and redshifts; angular diame-
ter distances and Hubble expansion rates as functions of redshift are required in order to convert
angular and redshift separations into physical distances. Those functions depend on the adopted
cosmological model. If the real cosmology is significantly different from the fiducial one, this
difference will introduce additional anisotropies in the correlation function through the Alcock-
Paczynski effect. This can significantly bias the measurements of growth (see e.g. Ballinger et al.
1996; Simpson & Peacock 2010; Samushia et al. 2012; Montanari & Durrer 2012).

In the presence of Alcock-Paczynski effect, the redshift-space power-spectrum is:

K L1
%\/14—“ <F2_1)], (38)

where p are standard cosmological parameters determining the shape of the real-space power-

(b+p"f)

2
P k/7 /7alaa ’ = P'
(K, 1 I:P) Za,

spectrum, k' and u’ are the observed wavevector and angle, related to the real quantities by k" | =
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K . . .
ok, K, = a k,, p’' = ———, where F = oy /a,, with o and o, being the ratios of angular
17> %1 g l I
. . . . fid real
and radial distances between fiducial and real cosmologies, 0| = %, a = %ﬁ.

Ignoring the AP effect is equivalent to assuming that o factors are equal to unity in Eq. (3.8).

4. SKA Surveys

The Square Kilometre Array (SKA) project is an international effort to build the world’s largest
radio telescope, several times more sensitive than any existing radio telescope and capable of ad-
dressing fundamental questions about the Universe (Carilli & Rawlings 2004). The SKA will be
developed in two stages. The first stage currently encompasses two mid-frequency facilities (~ 1
GHz) operating within South Africa (SKA1-MID) and Australia (SKA1-SUR). A low frequency
array (SKAI-LOW ~ 100 MHz) will also be set in Australia. We refer to Dewdney et al. (2009)
for a description of the setups. In the second stage of the SKA, the plan is to extend the array by
about a factor of 10, both in collecting area and primary beam (field of view), thus significantly
increasing the survey power of the facility. In the following sections, we consider two types of
surveys that can be used to probe the redshift space distortions.

4.1 HI surveys

The most straightforward way to go after the RSD signal is through a line galaxy survey. In
the radio, the solution is to use the HI 21cm line which, by measuring its characteristic shape, will
allow determination of very accurate redshifts (6z < 1.0 x 10~%). The advantage of such threshold
surveys is that we can be confident to be free of any foreground contamination. The disadvantage
is that it requires high sensitivities to detect HI galaxies at non-local redshifts (the highest redshift
HI galaxies detected up to date was at z ~ 0.14 with Arecibo (Freudling et al. 2011)).

Cosmological applications will require detecting enough galaxies to beat shot noise and over
a large enough area to reduce cosmic variance. With the sensitivities for SKA1 and taking 10,000
hours of observation time, the optimal survey area will be around 5,000 deg?. This will allow the
detection of about 107 galaxies using band 2 from SKA1-MID or SKA1-SUR, while SKA1-MID
band 1 should detect less galaxies (~ 10%) since it will be constrained to higher redshifts (0.4 <
z < 3). SKA2, on the other hand, should be capable of detecting about 10° galaxies over a 30,000
deg? area, up to z ~ 2.0, making it the largest galaxy redshift survey ever. The noise calculations
and parameters for this HI galaxy survey can be found in the HI simulations chapter (Santos et al.
2015a). In Figure 1 we plot the redshift distributions and bias for the different SKA configurations
described above.

4.2 Late-time HI intensity mapping

A relatively new alternative to large galaxy redshift surveys is 21 cm intensity mapping.
Galaxy surveys need high signal-to-noise detections of many millions of individual sources, re-
quiring high flux sensitivity and long, dedicated surveys to reach z ~ 1. Intensity mapping (IM)
attempts to circumvent these requirements by performing fast, low angular resolution surveys of
the redshifted 21 cm emission line from neutral hydrogen (HI) integrated over many unresolved
galaxies. For a more extensive discussion on HI intensity mapping, particularly in the context of
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Figure 1: Redshift distributions (left panel) and bias (right panel) for the SKA1 and SKA?2 surveys used in
this work.

the SKA, we refer to Santos et al. (2015b). If we assume that, after reionisation, all the neutral
hydrogen is contained within galaxies, as host galaxies are biased tracers of the cosmological large
scale structure, so too is the integrated HI emission. Much of the cosmological information of
interest (e.g. RSDs and BAOs) is found at large scales, so the lack of resolution is tolerable, and
as the signal is from an emission line, redshift information is automatically provided as well. This
allows large surveys to be performed extremely rapidly, efficiently recovering the 3D redshift-space
matter power spectrum on large scales. An intensity mapping survey on SKA1-MID or SUR will
be able to measure BAOs and RSDs over 25,000 deg? on the sky from 0 < z < 2.5, for example
(Santos et al. 2015b).

One way of thinking about an IM survey, then, is as a galaxy survey with the small angular
scales averaged out. Information in the radial direction is mostly preserved, as modern radio re-
ceivers have sufficiently narrow frequency channel bandwidths that high redshift resolution can be
obtained. The model for the RSD signal in intensity maps is therefore quite similar to that for a
galaxy survey, except that the observable is the power spectrum of HI brightness temperature fluc-
tuations, (87, 87,) « T2P(k), where T}, is the mean HI brightness temperature. Note that the shot
noise contribution has to be replaced by a more complicated direction-dependent noise term (see
e.g. Bull et al. 2014b). In this chapter we will focus on the RSD constraints that can be achieved by
measuring the anisotropic power spectrum with IM surveys on SKA1-MID and SUR. Our forecasts
are for 10,000 hour autocorrelation surveys over 25,000 deg? on bands 1 and 2 of both arrays.

5. Forecast

In this Section we forecast the cosmological measurements that will be performed using the
SKA using the configuration presented in Section 4; we present forecasts on parameters describing
models for the growth of structures mentioned in Section 5.2.

5.1 Fisher Analysis

In order to predict the precision in the measurements of cosmological parameters, we perform
a Fisher matrix analysis (Fisher 1935; Tegmark et al. 1997); we write the curvature or Fisher matrix
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for the power spectrum in the following way:

Zmax Kmax +1 7] 2 2
Zmin kmin -1

1471 (2)P(k,,2) | 872 [P(k,1,2)]>  9Va 99
(5.1)

where ¥yg) is the o(B)-th cosmological parameter, V; is the volume of the survey and 7, is the
mean comoving number density of galaxies. The last term accounts for the non-linearities induced
by the BAO peak (Seo & Eisenstein 2007):
C2v2 12,2 (v2_y2

B, = VELu (ZH EL)7 52)
and X =XoD, ¥ = Xo(1+ f)D, where X is a constant phenomenologically describing the nonlin-
ear diffusion of the BAO peak due to nonlinear evolution. From N-body simulations its numerical
value is 12.4 h~'Mpc and seems to depend linearly on o3, but only weakly on k and cosmological
parameters. The integral in & is performed in each redshift bin using (Smith et al. 2003):

2

kmin = W 5 (5.3)
bin

kmax = knpo(1+ 2)2/ ) (5.4)

In the rest of this Section we present the models we investigate: we focus on ways to explain
the cosmic acceleration, either via dynamical dark energy or modifications of the model for gravity.

5.2 Growth of structures

We study how the SKA could constrain parameters describing the growth of structures. There
are several models for it based on different explanations for the accelerated expansion of the Uni-
verse; they can be divided into two main categories: dark energy and modified growth. Measuring
RSD allows us to test different cosmological models and provides a good discriminant between
modified gravity and dark energy models (see e.g. Linder 2005, 2007; Guzzo et al. 2008).

5.2.1 Dark Energy Models

In the standard ACDM model, the accelerated expansion of the universe is caused by a dark
energy component that behaves like a cosmological constant, but alternative models have been
proposed and are still allowed by data.

Dynamical models can be distinguished from the cosmological constant by considering the
evolution of the equation of state of dark energy, w = p/p, where p and p are the pressure density
and energy density of the fluid, respectively. In the cosmological constant model, w = —1, while
for dynamical models w = w(a). It is the useful to consider a Taylor expansion of the equation of
state (Linder 2003):

w(a) =wo+wy(l —a); (5.5)

in the ACDM model we have wy = —1 and w, = 0. If a deviation from these values will be detected
(in particular if w, # 0), then this would suggest that the correct model is one where the dark energy
component of the universe is evolving with time.
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In Figure 2 we plot constraints on the parameters {wg,w,} (including Planck+BOSS priors),
for the different SKA1 and SKA?2 surveys, comparing results with predictions for the Euclid ex-

periment.
0.4 . , , : , | .
mmm SKA1-MID B1 (IM)
i SKA1-SUR B1 (IM)
. SKA2 (gal.)
0.2} Euclid (gal.) _
< 00F |
-0.2 + 4
_04 1 1 1 1 1 1 1
-1.1 -1.0 -0.9
Wo

Figure 2: Predicted constraints from SKA on dynamical dark energy parameters. We show predicted con-
straints from SKA IM and SKA2, compared with predictions for Euclid.

SKAT1 HI surveys will not be able to provide competitive constraints on these parameters, so
we don’t show them, but results form the IM surveys will be competitive, and the SKA?2 galaxy sur-
vey should be able to allow improvements on measurements of dynamical dark energy parameters
over the predicted Euclid galaxy survey.

5.2.2 Modified Growth Models

Measuring the matter velocity field at the locations of the galaxies gives an unbiased measure-
ment of fogy, provided that the distribution of galaxies randomly samples matter velocities, where
f is given by Equation 2.1 and o3, quantifies the amplitude of fluctuations in the matter density
field. The growth factor is sometimes parameterized as (Linder 2005):

a , dd
D(a) = a exp / Qhd)—1]—1, (5.6)
0 a
which leads to the following expression for f:
f=1Qu(a)”, (5.7)

where:
Qa3

- Y, Qi exp 3fa1 wi(d)+1] dfcf/] 7

Qp(a) (5.8)
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where the summation index goes over all the components of the Universe (i.e. dark matter, dark
energy, curvature, radiation). Within this formalism, ¥ is a parameter that is different for different
cosmological models: for example, in the standard ACDM+GR model it is constant, ¥y ~ 0.55,
while it is ~ 0.68 for the self-accelerating DGP model (see e.g. Linder 2005). In some other cases,
it is a function of the cosmological parameters or redshift (see e.g. Raccanelli et al. 2013). It should
be noted, however, that the parameterization given by Equation 5.6 does not necessarily describe
the growth rate in non-standard cosmologies (see e.g. Schmidt 2009).

In this paragraph we study how the SKA will be able to constrain the growth of structures in
two different cases; we investigate constraints on the growth of structures for models with:

e Parameterized growth:
{h,.Q.;L,Q.K,.Qm,.Qb,nS,W(),Wa, Gg,b, Y, fNL}
For the parameterized case we assume a model for the redshift evolution of f, the bias and
og (and assume we have some independent measurements of them from e.g. the CMB), and
we constrain the growth rate parameter y. Our results show that, while predictions for SKA1
HI galaxies are not competitive, the IM case is competitive with current optical surveys and
comparable to future surveys such as Euclid. Constraints coming from the SKA2 galaxy
survey are predicted to considerably improve forecasted results from Euclid.

In Figure 3 we plot constraints on the growth rate parameter y and the effective wy (including
Planck+BOSS priors) for some SKA1 IM surveys and for the SKA2, comparing results with
predictions for Euclid.

mmm SKA1-MID B1 (IM) ]
SKA1-SUR B1 (IM)

-0.9 - Euclid (gal.) .
B SKA2 (gal.)

Wy
|

—

o
T

0.45 0.50 0.55 0.60 0.65 0.70
g

Figure 3: Predicted constraints from SKA on parameterized growth. We show predicted constraints from
SKA IM and the SKA2, compared with predictions for Euclid.

e Unparameterized growth function:

11
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{h7QA,QK,thQb,ns,WO,Wa“ng,ng}

In this case we assume we have no prior knowledge on the above parameters, and we con-
strain the combination { fog,b0g }.

Again our predictions show that SKA1 HI galaxy surveys are not competitive, while the IM
case is competitive with current optical surveys and comparable to future surveys such as
Euclid, at low redshift. Constraints coming from the SKA?2 galaxy survey are predicted to be
the best ones at low-z and comparable to Euclid at medium z. This can be seen in Figure 4,
where we plot constraints on the fractional precision on measurements of fog in different

redshift bins.
' — SKA1-MIiD B1 (IM) ' SKA1-MID(IgaI.)
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Figure 4: Predicted constraints from SKA on fog from the SKA1 (galaxy and IM) and the SKA2, compared
with predicted constraints coming from the Euclid galaxy survey.

6. Discussion

In this Chapter we presented forecasts for the measurements on the growth that will be possible
to obtain by measuring the full shape of the galaxy power spectrum with the SKA. We investigated
how the different proposed SKAT1 (both in the IM and HI cases) and SKA?2 surveys will enable
measurements of parameters describing models for the growth of structures.

In all cases analyzed, our results show that the SKA1 HI surveys will not be competitive with
future galaxy surveys on the same time-scale. However, the IM case will give constraints, at low-z,
at the same level of constraints provided from Euclid at medium-z. SKA2, on the other hand, should
provide the best constraints on low-redshift, and constraints that are comparable to the predicted
Euclid ones up to redshift ~1.5.

In this work we haven’t considered systematic effects that could bias the measurements and
decrease their precision; on the other hand, in our results we haven’t included a proper modeling

12



RSD with the SKA Alvise Raccanelli

of non-linear effects, which would allow including many more modes, nor a modeling of the ultra-
large-scale effects. Both would improve the constraining power of galaxy clustering measurements.
Further improvements could be enabled by the use of the so-called multi-tracer technique. Another
technique that will be worth investigating derives from measuring peculiar velocities of galaxies
using the Tully-Fisher relation.

Overall our results show that the SKA promises to provide the best constraints on models for
the growth for the next generation of galaxy surveys.
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