3,640 research outputs found

    Design, fabrication and test of liquid metal heat-pipe sandwich panels

    Get PDF
    Integral heat-pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich panel construction, were fabricated and tested. The designs utilize two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and potassium or sodium as the working fluid. Panels were tested by radiant heating, and the results indicate successful heat pipe operation at temperatures of approximately 922K (1200F). These panels, in addition to solving potential thermal stress problems in an Airframe-Integrated Scramjet Engine, have potential applications as cold plates for electronic component cooling, as radiators for space platforms, and as low distortion, large area structures

    Radiant heating tests of several liquid metal heat-pipe sandwich panels

    Get PDF
    Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors

    Movements execution in amnestic mild cognitive impairment and Alzheimer's disease.

    Get PDF
    We evaluated the relationship between motor and neuropsychological deficits in subjects affected by amnestic Mild Cognitive Impairment (aMCI) and {early} Alzheimer's Disease (AD). Kinematics of goal-directed movement of aMCI and AD subjects were compared to those of age-matched control subjects. AD showed a slowing down of motor performance compared to aMCI and controls. No relationships were found between motor and cognitive performances in both AD and aMCI. Our results suggest that the different motor behaviour between AD and aMCI cannot be related to memory deficits, probably reflecting the initial degeneration of parietal-frontal circuits for movement planning. The onset of motor dysfunction in early AD could represent the transition from aMCI to AD

    Elevated-temperature application of the IITRI compression test fixture for graphite/polyimide filamentary composites

    Get PDF
    Seventy-nine graphite/polyimide compression specimens were tested to investigate experimentally the IITRI test method for determining compressive properties of composite materials at room and elevated temperatures (589 K (600 F)). Minor modifications were made to the standard IITRI fixture and a high degree of precision was maintained in specimen fabrication and load alignment. Specimens included four symmetric laminate orientations. Various widths were tested to evaluate the effect of width on measured modulus and strength. In most cases three specimens of each width were tested at room and elevated temperature and a polynomial regression analysis was used to reduce the data. Scatter of replicate tests and back-to-back strain variations were low, and no specimens failed by instability. Variation of specimen width had a negligible effect on the measured ultimate strengths and initial moduli of the specimens. Measured compressive strength and stiffness values were sufficiently high for the material to be considered a usable structural material at temperatures as high as 589 K (600 F)

    Structural sensitivity analysis: Methods, applications, and needs

    Get PDF
    Some innovative techniques applicable to sensitivity analysis of discretized structural systems are reviewed. These techniques include a finite-difference step-size selection algorithm, a method for derivatives of iterative solutions, a Green's function technique for derivatives of transient response, a simultaneous calculation of temperatures and their derivatives, derivatives with respect to shape, and derivatives of optimum designs with respect to problem parameters. Computerized implementations of sensitivity analysis and applications of sensitivity derivatives are also discussed. Finally, some of the critical needs in the structural sensitivity area are indicated along with Langley plans for dealing with some of these needs

    Tests of graphite/polyimide sandwich panels in uniaxial edgewise compression

    Get PDF
    The local and general buckling behavior of graphite/polyimide sandwich panels simply supported along all four edges and loaded in uniaxial edgewise compression were investigated. Material properties of sandwich panel constituents (adhesive and facings) were determined from flatwise tension and sandwich beam flexure tests. Buckling specimens were 30.5 by 33 cm, had quasi-isotropic, symmetric facings, and a glass/polyimide honeycomb core. Core thicknesses were varied and three panels of each thickness were tested at room temperature to investigate failure modes and corresponding buckling loads. Specimens 0.635 cm thick failed by overall buckling at loads close to the analytically predicted buckling load; all other panels failed by face wrinkling. Results of the wrinkling tests indicated that several buckling formulas were unconservative and therefore not suitable for design purposes; a recommended wrinkling equation is presented

    Experimental investigation of graphite/polyimide sandwich panels in edgewise compression

    Get PDF
    The local and general buckling of graphite/polyimide sandwich panels simply supported along all four edges and loaded in uniaxial edgewise compression is investigated. Material properties of sandwich panel constituents (adhesive and facings) were determined from flatwise tension and sandwich beam flexure tests. An adhesive bond study resulted in the selection of a suitable cure cycle for FM 34 polyimide film adhesive and, a bonding technique using a liquid cell edge version of that adhesive resulted in considerable mass savings. Tensile and compressive material properties of the facings, quasiisotropic, symmetric, laminates (0, +45,90,-45)s of Celion/PMR-15, were determined at 116, R.T., and 589 K (-250, R.T., and 600 F) usng the sandwich beam flexure test method. Results indicate the Gr/PI is a usable structural material for short term use at temperatures as high as 589 K (600 F). Buckling specimens were 1006.5 sq cm. 156 sq in., had quasiisotropic symmetric facings (0, + or - 45,90)s and a glass/polyimide honeycomb core (HRH-327-3/8-4)

    Binary Black Hole Mergers in 3d Numerical Relativity

    Get PDF
    The standard approach to the numerical evolution of black hole data using the ADM formulation with maximal slicing and vanishing shift is extended to non-symmetric black hole data containing black holes with linear momentum and spin by using a time-independent conformal rescaling based on the puncture representation of the black holes. We give an example for a concrete three dimensional numerical implementation. The main result of the simulations is that this approach allows for the first time to evolve through a brief period of the merger phase of the black hole inspiral.Comment: 8 pages, 9 figures, REVTeX; expanded discussion, results unchange

    Global-Local Finite Element Analysis for Thermo-Mechanical Stresses in Bonded Joints

    Get PDF
    An analysis of adhesively bonded joints using conventional finite elements does not capture the singular behavior of the stress field in regions where two or three dissimilar materials form a junction with or without free edges. However, these regions are characteristic of the bonded joints and are prone to failure initiation. This study presents a method to capture the singular stress field arising from the geometric and material discontinuities in bonded composites. It is achieved by coupling the local (conventional) elements with global (special) elements whose interpolation functions are constructed from the asymptotic solution
    • …
    corecore