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Abstract
An analysis of adhesively bonded joints using conventional finite elements does not
capture the singular behavior of the stress field in regions where two or three dissimilar materials
form a junction with or without free edges. However, these regions are characteristic of the
bonded joints and are prone to failure initiation. This study presents a method to capture the
singular stress field arising from the geometric and material discontinuities in bonded
composites. It is achieved by coupling the local (conventional) elements with global (special)

elements whose interpolation functions are constructed from the asymptotic solution.

Introduction
Although bonded joints are a prime means for transferring load in the construction of
composite structures, they are potential failure sites due to the presence of geometric and
material discontinuities causing high stress concentrations. Reliable predictions of the gross
response of the structure cannot be made accurately unless a precise description can be made of

the interface through which the transfer of load is achieved. Thus, understanding the nature of



interfacial stresses is critical in designing reliable bonded joints, and efforts to understand the
mechanisms needed to improve the strength of the bonded isotropic and composite materials are
still continuing. Previous analyses of bonded joints can be categorized as the “shear-lag” and
“finite-element” models. An extensive review and in-depth discussion of the previous
investigations can be found in articles by Tsai and Morton (1994) and Ding and Kumosa (1994).

Both the shear-lag models and finite-element models with conventional elements fail to
capture the singular stress field at the junction of dissimilar materials. Blanchard and Watson
(1986) concluded that a finite element analysis of such regions would not guarantee a convergent
peak stress even with continued mesh refinement. In order to capture the exact nature of the
stress field and to minimize the intensive computations arising from the refinement of the mesh,
Barsoum (1988a, 1988b, 1990) introduced an iterative scheme in conjunction with the finite-
element analysis without the use of a special (enriched) element. This approach is effective for a
bimaterial interface with or without cracks. However, it suffers from the number of iterations
required for convergence and the inability to enforce the continuity of traction components
across the interface. Also, the rate of convergence and the accuracy of the results are dependent
on the material properties and the scaling of the displacements during the iterations. Ding and
Kumosa (1994) and Ding et al. (1994) applied this method to determine the singular stress field
near the intersection of a bimaterial interface with free edges in adhesive joints. Although they
captured the accurate description of the stress field near the junction, the strength of the
singularity becomes inaccurate at distances very close to the free surface, where the failure
usually initiates. This may be attributed to the limitation of the finite elements utilized in the
analysis.

To overcome this type of shortcoming in modeling a crack along a bimaterial interface,
Chen (1985) developed an element with appropriate interpolation functions built in to account
for the singularity at the crack tip. The unknown stress intensity factors are included explicitly in
the expressions for the interpolation functions, and they are determined directly as part of the

solution. Recently, Gadi et al. (1995) extended this method to determine the singular stress field



for the crack tip situated at the junction of three dissimilar sectors of material. Based on a
similar concept, Kuo and Chen (1993) introduced a hybrid element with appropriate stress fields
to investigate the transient thermal stresses in multi-layered regions with finite dimensions.
However, both the hybrid and the enriched elements are limited to a specific geometry where the
free edges are either perpendicular or parallel to the bimaterial interface, respectively.

In a finite-element analysis of bonded joints, Destuynder et al. (1992) introduced a
method to reduce the adhesive layer to a line through the use of asymptotic expansions of
analytical solutions for the singular stress field near the geometric and material discontinuities.
Also, Lin and Lin (1993) introduced a new element based on the Timoshenko beam theory for
modeling the adhesive layer while accounting for the transverse shear and normal stresses in the
adherents. However, this element does not account for the singular behavior of stress fields.

The previous analytical and finite-element investigations were primarily concerned with
isotropic adherent materials, because the presence of orthotropic materials is not suitable for
directly constructing the analytical solution to the singular stress field. An analysis capability is
lacking for determining the exact nature of the stress field in composite structures with bonded
joints involving two or three dissimilar materials. Therefore, a global finite element with
appropriate interpolation functions to capture the correct singular behavior arising from material
and geometric discontinuities is developed here and is implemented into a finite element program
with conventional elements. This program permits the analysis of various bonded joint
configurations with accurate stress distributions in the critical regions and the extraction of the
stress intensification parameter or the energy release rate in the presence of a crack. The results
from this analysis provide the required parameters for the fracture criterion introduced by Gradin
and Groth (1984) in order to estimate the strength of the bonded joint. Also, this program is
integrated into the commercially available finite element program ANSYS so that the designer
can use the ANSYS pre- and post-processing capabilities and execute the program within the

ANSYS environment.



Solution Method

The global-local finite element concept introduced by Mote (1971) is utilized in
determining the stress field in regions consisting of a junction of two or three wedge-shaped
sectors of orthotropic material with or without free edges (Figure 1). The extension and
application of this method were demonstrated by Bradford et al. (1976, 1979, 1984), Dong
(1983), and Her (1990). The development of the global element stiffness matrix is similar to that
of a conventional (local) element, except for the interpolation functions. In this study, these
functions are established by solving for the stress and displacement fields in the regions
illustrated in Figure 1. In these regions, each material is assumed to be elastic, homogeneous,
and specially orthotropic, with elastic coefficient Cb In reference to the Cartesian coordinates

(x, ¥), the stress-strain relations under plane-strain assumptions are

k k k
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where 0'543 and 55:[3 are the stress and strain components, respectively. A method is presented
in the Appendix that provides an average stiffness matrix for balanced laminates for which the
material and reference coordinate systems do not coincide. This average stiffness matrix contains
the independent coefficients of a specially orthotropic material. Throughout this study, the sub-
or superscript £ denotes a specific sector of the region. The interfaces among the adjacent
materials, specified by angles @;, are assumed to be perfectly bonded, thus requiring the
continuity of traction and displacement components along the interfaces.

The explicit forms of the displacement and stress components in the vicinity of the

junction are constructed by solving for the displacement equilibrium equations expressed as

k k k k k k k
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As suggested by Williams (1952), representing the displacement components as

Lté(r.9)=rAG§(9) with x = x, y (3)
permits the reduction of Equation (2) to a system of ordinary differential equations in terms of

the unknown functions Gﬁ(e) in matrix form"

M, (6;C; )G} (6) +(1- )M} (8;C; )G} (8)
4)
A
- li,lek (9, C‘J) + EMZ (6, C‘.l) - A.sz (C‘] ):le (9) =0

where the known matrices L, and M, are defined by

k k

0 (X +ck)

L, :
m(6;Cs, Cl) S m'(8:C, Co)
M, =(6;C;) =

%m’(e;clkbc&) m(6;C32,Cés)

with m(8;a,b) = acos” 6 +bsin’ @ . The unknown functions Gé‘,(@) are contained in the vector
G, () as GZ(G) = [G,’c‘ (6), Gf‘ (6)]. In Equation (2), the displacement components are defined
in reference to a polar coordinate system, (r,8), whose origin coincides with the junction of the
vertices as shown in Figure |. The unknown parameter A, dependent on the geometry and the
material properties, indicates the strength of the singular behavior for the stress field. Utilizing
the displacement representation given in Equation (3) and the strain displacement relations along

with Equation 1, the displacement and stress components required for imposing the interface and

boundary conditions can be expressed in polar coordinates as

" Throughout this study, a prime denotes differentiation with respect to the variable 8.



u, (r,0) = r*T(6)G, (6)
(5
6 (r,.8)=r*"[AE, (6;C;)G (6) + F (6;C;)Gf ()]

in which the explicit forms of the matrices are given by

[cos@ sin6
T)=| .
| sin@  cosé
B o] m6:Clh,Cli-2Ck)cos6 -m(8;C, +2¢k . cly)ysing
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The vectors u; (r,8) and o (r,0) contain the displacement and stress components, respectively,
as uZ(r,G) =[uf(r,6).u§(r,9)] and GZ =[oge(r,9),ofa(r,9)]. For completeness, the normal
stress component, ¢ ,,.(r,8) is given by

of (r.8)=r*"[2e] (6:C;)G, (8) + £] (6;C;)G} (8]
where

el (6:C;)= [m(e; ck.ck +2Ck)cos8 m@.Ch +2Ck. Ck)sin 9]

t] (6:C) = [—m(9; ck —2ck.ck)sing m@6:ck.ck —2Ck)cos 9]

Determination of the unknown functions G§(9) with o = x,y requires the solution of
the system of ordinary differential equations with variable coefficients, Eq. (4), subject to the
interface and boundary conditions. In the case of three sectors of dissimilar materials forming a

junction, as shown in Figure la, the interface conditions are expressed as



0ig(r8) =055 (r8,) k=12
v o, f=r.0 with a=8=r

Oap(r8x) =045 (r04) k=3 |
(6)
ub(r0)=ul"(r0) k=12 |
ra,f=r0

ué(r,ek)zué—l(r,ekﬂ) k=3

/
For the intersection of a bimaterial interface with free edges, as shown in Figure 1b, the interface

and boundary conditions become

Ohp(r8;)=0

Ohp(r8i) =055 (nBi)p k=1 and @,B=r.0 with a=f=r (7

Ohp (r042)=0

ué(r,akﬂ):uéﬂ(r,ekﬂ); k=1 and a,B=r,0

The solution to the differential equations, Eq. (4), exists for values of A that satisfy the
characteristic equation of the homogeneous system of equations resulting from the imposition of
the conditions (Eq. 6 or 7). Because of the complexity of the variable coefficients in Eq. (4), the

solution to these equations is constructed numerically by recasting them as a set of first-order

ordinary differential equations in terms of Gé (@) and G;,k (6) in the form

G (®)* 0 1 0 0 R
d |GO®| | Au6:Cy A BLB:Cyd) AR(6:Cy.A) Bp(68:CyA) 1 1GL(6) @)
de |G, (&) 0 0 0 1 G,(6)

G;(B) Az](e, Clj’l) BZI(G'CU‘A’) Azz (Q,CU,A) 322 (B’CU‘)') G;, (9)
where A;; and B,; are the components of the matrices A and B defined by

y ) X
A¥ (B¢ M) = MK‘(e;c,j)[lzmk(e;c,j)+5M;;(6;c,,) - lsz(Cq-)]



and

B (6;C;j, A) = (A - DM (6:C;)M, (6:C;)

The solution to this form of equations, Eq. (8), subject to the interface and boundary conditions
is achieved by a Runge-Kutta forward integration scheme in conjunction with the shooting

method. This procedure requires the initial estimates of the eigenvalues, A, and the corresponding

eigenfunctions, GOL;(G) , as well as the target conditions. The integration process continues until

the target conditions are satisfied, which requires the difference between the computed and
prescribed conditions to vanish. In the case of three sectors of dissimilar materials, the target

conditions are obtained from the interface conditions between the third and first regions as
03(93)201(94) and 03(93)=C](94) (9)
with 64 =2 -65. The explicit forms of these conditions are expressed as
Q=G3(63)-G(64)=0

(10)
R= F3(93,CU)G3(93) +A[E3(93;C‘:j)— E|(94;C,'j)]G3(93)— Fl(94)Gi(64)=O

in which Q7 =[Q,.0Q,] and RT =[Ry.R,]. In order to satisfy these conditions, Eq. (10), a

positive definite objective function is defined in terms of the modulus of the complex functions

Q¢. Qy, Ry, and R, as
2 2
S=|QI|2+|Q),’ +|Rx]2+[R>.] (1)

With the well-established optimization techniques, the objective function is minimized by

varying the real and imaginary parts of 4, G[(84),and G{(8,).



Determination of the eigenvalues and corresponding eigenfunctions satisfying the

equilibrium equations and the interface conditions permits the expression of stress and

displacement components as

N
Capf = zxifraﬁ("eili)

i=1

N
g = 2, %;Go(r6;A;)

=1

afB=xy

(12)

The generalized coefficients, x;, are determined by enforcing the continuity of the nodal

displacements at the interface nodes between the global element and the surrounding local

(conventional) elements. As illustrated in Figure 2, the global element with M interface nodes

requires the imposition of the continuity conditions given by

[up(r.00) ] [ Ge(n.01:4) Gx(n.61;43)
u),(rl.Ql) gy(rl,el;ll) (}y(r,,Bl;Az)

uy(ryg O ar) | | Gelrar Oarid) Golrar . Bari42)
uy(ryg O ar)] (Gy(rm B A1) Golray.Oaids)

or

(u} =[G} {x}

Ge(n.0:An)

G,(n.61:Ay)

Golrm O ariAn)

Gy(ry OariAm)]

le

X2

kxN‘

> (13)

In general, the number of equations, 2M, exceeds the number of unknown coefficients, N,

resulting in an overdetermined system. Therefore, the unknown coefficients are expressed in

terms of nodal displacements based on the least squares minimization procedure as follows:

(x)=(Z](u) with (Z)=UG1T (60" G

]T

(14)
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Determination of these coefficients permits the expression of the stress and displacement
components in terms of the nodal displacements, and the strain energy in the global element

becomes

U =-;-f (W (21 (Fop ) (Ga HZN uingdS . a.B=xy (15)

S
where 7 gare the components of the unit normal to the surface, S, of the global element. The

vectors {?aﬂ} and {G,} are defined as

(Fap) ={Fap(r.8: A1), Fap(r.0:42), ..., Fop(r.0:A )}
(16)
(Gat ={Ga(r.6:41), Go(r.6;17), ..., Go(r.0;An)}

Minimizing the strain energy with respect to the nodal displacements associated with the

global element résults in the global stiffness matrix [k] defined as

[k1=%j[21{faﬁ}r{ga)+{ga}T{faﬁmzmds (17)
S

The global and local element stiffness matrices are assembled to establish the system equilibrium
equations as

(K1{é}={F]} (18)
where [K] is the system stiffness matrix and the vectors {8} and {F} include the total nodal
displacement and force components, respectively. This process led to the development of a finite
element program incorporating both global and local elements. The local elements consist of
quadrilaterals and triangular elements, whose interpolation functions can be found in any
textbook on the elementary finite element method. The shape of the global element can be an n-
sided polygon, depending on the details of the mesh surrounding the global element. The
number of interface nodes and the size of the global element were established based on

convergence requirements.

" Repeated subscripts imply summation.
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This global-local finite element program is implemented in the ANSYS platform through
the use of ANSYS Parametric Design Language (APDL) commands. It permits execution of the
program without leaving the ANSYS environment. The global element is introduced into the
ANSYS element library as “USER104” through the User Programmer Features (UPFs) routines.
For this purpose, ANSYS is customized and relinked by including two FORTRAN routines,
“uecl04.f " and “uell04.f". The first routine describes the characteristics of the element, such as
the maximum number of nodes associated with the global element. The second routine arranges
the element matrices, load vectors, results, and element solutions data during normal ANSYS
execution. However, it acts as a dummy routine because the global-local analysis program is
used in constructing the solution rather than ANSYS. The real constants for each global element
are defined by:

1. The x and y coordinates of the origin of the local coordinate system associated with

the global element.

2. Material number associated with the region.

3. Angle specifying each region.

This capability permits the use of ANSYS pre- and post-processing for the global-local finite

element analysis.

Numerical Results
Analysis of bonded dissimilar composite materials by the present approach is
demonstrated through a single-lap adhesive joint with three typical configurations. The geometry

and dimensions of each of these lap-joint configurations are described in Figure 3. The

parameters c¢; and ¢, and h; and h; denote the end distance (c) and thickness (#) of the top and
bottom adherents, respectively, with numerical values of ¢ =c; =200 mm and
hy =hy =5 mm. Also, a long and a short joint with overlap lengths of /=320 mm and 40 mm

are considered in order to capture the effect of joint length. For joint type II, bevel angles of

8,and 6, are equal and are specified as 45°. The parameters 7, ¢, ¢, and ¢, describing the



overflow of the adhesive in joint type Il are specified as /; =¢, =2h, with the adhesive
thickness # = 0.4 mmand ¢ =¢, =45° As shown in Figure 3, the upper adherent is subjected
to a uniform stress, 0, and the lower adherent is fixed at the other end. The adhesive is an
isotropic material with Young’s modulus £ = 3400 MPa and Poisson’s ratio v = 0.35. Top and
bottom adherents are composed of [0°/90°/0°] plies with properties E; =147 GPa,
Er =11GPa, G 7 =53GPa, and v;7 =0.3. The averaged orthotropic properties for the top
and bottom adherents are computed to be 118.73Cy; = GPa, Cp, =36.14 GPa, C|; =12.06
GPa, and Cgq =6.21 GPa. In the case of isotropic adherents, the Young's modulus and
Poisson’s ratio are taken as E = 200 Gpa and v = 0.3, respectively.

The finite element representation of each lap-joint configuration with global and
conventional elements is illustrated in Figures 4-6. Their overall deformations under the
specified load of og=1MPa are shown in Figure 7. The eigenvalues retained in the
construction of the interpolation functions for each global element are tabulated in Table 1 for
the isotropic adherents. For a type I joint, the behavior of the peel and the shear stresses in each
global element along the bond line from the junction point is given in Figure 8. The peel and
shear stresses along the bond line of the most stressed region represented by global element D for
all joint types are shown in Figure 9.

Based on the strain energy density criterion introduced by Sih and Macdonald (1974), an
examination of the strain energy density around the junction point for a specified distance
provides possible failure sites and the crack propagation path once the failure initiates. The
variations of the tangential and shear stresses and the strain energy density for a specified core
region, ry = 0.05 mm, around the junction in each global element are shown in Figures 10-12.
These figures reveal that the failure in joint type I is most likely to initiate in global element D at
the junction of the top adherent and the adhesive, and it is predicted that it will propagate along
the bond line. For type II lap-joints, the possible failure site is also in global element D along the

bond line. For type III lap joints, the failure may initiate at the junction points E or F and the



crack is likely to grow into the adhesive in the vertical direction. These results are all based on

the eigenvalues presented in Table 1.

Conclusions

The global-local finite element analysis eliminates the use of a fine mesh and provides an
accurate description of the stress field in the critical regions of the bonded joints. The order of
the singularity along with the corresponding stress intensification parameter can be used for
predicting failure in the adhesive layer of the joint. With this capability, the geometry and
material properties can be optimized to minimize stress intensification. Also, this approach can
be extended to the analysis of bonded joints with visco-elastic adhesive layers. As indicated by
Ratwani et al. (1982), the effect of modulus relaxation becomes important because a large

redistribution of stresses occurs while the joint is loaded.
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Appendix
Because only specially orthotropic materials are considered in this formulation, it is
limited to laminates with a ply orientation of either 0° or 90°. However, a method exists to
determine the average specially orthotropic stiffness matrix for a balanced laminate. A balanced
laminate is a panel that has a negatively oriented ply for every positively oriented ply. Thus, this
analysis can be expanded to model any balanced laminate if an average stiffness matrix is

utilized.
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To determine the average stiffness matrix, the stiffness matrix of each ply in the global
coordinates is required. The stress-strain relationship for the k™ layer of a laminate can be
represented as

ok =ckek (19)
or

gk = Ckgk (20)
where the tilde denotes the quantities in the local reference frame. The unit vectors of the local

reference frame can be written in terms of the direction cosines and the global unit vectors as

k
né l] m npn,
nn = 12 m; nj3 l‘l). (21)
ng 13 my ny||n.

With these direction cosines, stresses and strains can be transformed to the global reference

frame through the transformation

k _mk=k
c =T"c (22)
gk = Tkgk
where
2 2 2Usly 2,13 2,1,
m12 m% m32 2momy 2mymy 2mymy
T* = n12 n% n% 2nyny 2nyns 2nny (23)
mn,  mpny  many  (mpny +many)  (mny +mang) (myng +myny) :
llnl lznz 13”13 (12113 +l3fl2) (lln3 + l3nl) (llnz + lznl)
L llm lz”‘lz l3ﬂl3 (lz"l3 +l3m2) (llm3 +I3ml) (llmz + lzml)_
Substituting Eqgs. (21) and (22) into (19) while noting that
T
TRT* =1 (24)

yields

. ~ T
ok =ThEkTH ¢k (25)



-17-

Thus, the transformation of the stiffness matrix from local coordinates to global coordinates is
ko kT
ck =TkCHT* (26)
The average stiffness matrix, C, of a balanced laminate is then represented by
Ik ~k
==Y ke 27
t

which represents an average weighting of the stiffness matrix based on the thickness of the layer.
Provided the laminate is balanced, C will represent a specially orthotropic material with 12
nonzero coefficients, 9 of which are independent. This averaging process is expected to provide
reasonably acceptable results, provided the paired balancing plies are located closely to one

another and the plies are relatively thin.
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Table 1. Eigenvalues associated with the global elements in the joints.

Global Elements

Lap-Joint Type AandD BandC Eand F
Without adhesive overflow -0.3272 -0.3015 --
0.7138 £ {1 0.5964 | 0.7144 * { 0.5961
Beveled adherents -0.3272 -0.1604 --
0.7138 = i0.5964 | 0.7053 = i 0.5931
With adhesive overlow -0.0219 -0.0219 -0.3702
0.1884 0.1814 -0.2211
0.1588

0.6441 = i0.0433
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Figure Captions

Figure 1. Junction of three and two dissimilar orthotropic materials.

Figure 2. Interface nodes between the global element and the surrounding local elements with
or without free edges.

Figure 3. The geometry of a single lap joint: (a) without adhesive overflow; (b) with beveled
adherents; (c) with adhesive overflow.

Figure 4. Finite element discretization of the lap joint without adhesive overflow.

Figure 5.  Finite element discretization of the lap joint with beveled adherents.

Figure 6. Finite element discretization of the lap joint with adhesive overflow.

Figure 7. Overall deformation of the long and short joints.

Figure 8.  Variation of stresses along the interface near the junctions of a short and long joint
without adhesive overflow in global elements A-D.

Figure 9. Variation of stresses along the interface in global element D near the junction of
short joints of type I-III.

Figure 10. Variations of the tangential and shear stresses and the strain energy density around
the junctions of short joints without adhesive overflow.

Figure 12. Variations of the tangential and shear stresses and the strain energy density around
the junctions of short joints with beveled adherents.

Figure 13. Variations of the tangential and shear stresses and the strain energy density around

the junctions of short joints with adhesive overflow.
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