14 research outputs found

    Paramagnetic tools for the structural analysis of high molecular weight proteins

    Get PDF
       Paramagnetic effects provide important structural and dynamic information of biomolecules. However, the attachment of lanthanides through small chelating organic molecules to proteins (the most common way to obtain paramagnetic effects) requires single cysteine mutants, optimization of the tagging reaction and previous knowledge of the three-dimensional structure of the target to select proper attachment sites. In this work was developed a new method that relieves most of these disadvantages: the lanthanide is not directly attached to the target protein, but instead to a "reporter" protein that binds and transmits paramagnetic information to the target protein.     In this thesis is shown that the attachment of a lanthanide in different locations on the surface of the reporter protein PDZ allows measuring residual dipolar couplings and pseudo contact shifts from several independent molecular alignments on any target. This is shown for ubiquitin and the maltose binding protein. The fusion of a 7-residue PDZ recognition peptide to the C-terminus of the target proteins is the only necessary modification to obtain the paramagnetic restraints. Therefore, this method allows recording a large amount of paramagnetic information from orientationally independent molecular alignments in proteins. Moreover, it is not necessary to have previous knowledge of the three-dimensional structure of the targets

    Evolution of substrate specificity in a recipient's enzyme following horizontal gene transfer

    Get PDF
    Despite the prominent role of horizontal gene transfer (HGT) in shaping bacterial metabolism, little is known about the impact of HGT on the evolution of enzyme function. Specifically, what is the influence of a recently acquired gene on the function of an existing gene? For example, certain members of the genus Corynebacterium have horizontally acquired a whole L-tryptophan biosynthetic operon, whereas in certain closely related actinobacteria, for example, Mycobacterium, the trpF gene is missing. In Mycobacterium, the function of the trpF gene is performed by a dual-substrate (βα)8 phosphoribosyl isomerase (priA gene) also involved in L-histidine (hisA gene) biosynthesis. We investigated the effect of a HGT-acquired TrpF enzyme upon PriA’s substrate specificity in Corynebacterium through comparative genomics and phylogenetic reconstructions. After comprehensive in vivo and enzyme kinetic analyses of selected PriA homologs, a novel (βα)8 isomerase subfamily with a specialized function in L-histidine biosynthesis, termed subHisA, was confirmed. X-ray crystallography was used to reveal active-site mutations in subHisA important for narrowing of substrate specificity, which when mutated to the naturally occurring amino acid in PriA led to gain of function. Moreover, in silico molecular dynamic analyses demonstrated that the narrowing of substrate specificity of subHisA is concomitant with loss of ancestral protein conformational states. Our results show the importance of HGT in shaping enzyme evolution and metabolism

    Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications

    Get PDF
    The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form

    1^1H, 13^{13}C and 15^{15}N Backbone chemical shift assignments of the n-terminal and central intrinsically disordered domains of SARS-CoV-2 nucleoprotein

    No full text
    International audienceThe nucleoprotein (N) from SARS-CoV-2 is an essential cofactor of the viral replication transcription complex and as such represents an important target for viral inhibition. It has also been shown to colocalize to the transcriptase-replicase complex, where many copies of N decorate the viral genome, thereby protecting it from the host immune system. N has also been shown to phase separate upon interaction with viral RNA. N is a 419 amino acid multidomain protein, comprising two folded, RNA-binding and dimerization domains spanning residues 45-175 and 264-365 respectively. The remaining 164 amino acids are predicted to be intrinsically disordered, but there is currently no atomic resolution information describing their behaviour. Here we assign the backbone resonances of the first two intrinsically disordered domains (N1, spanning residues 1-44 and N3, spanning residues 176-263). Our assignment provides the basis for the identification of inhibitors and functional and interaction studies of this essential protein

    Identification and analysis of residues contained on β → a loops of the dual-substrate (βα)8 phosphoriblosyl isomerase A specific for its phosphoribosyl anthranilate isomerase activity

    No full text
    A good model to experimentally explore evolutionary hypothesis related to enzyme function is the ancient-like dual-substrate (βα)8 phosphoribosyl isomerase A (PriA), which takes part in both histidine and tryptophan biosynthesis in Streptomyces coelicolor and related organisms. In this study, we determined the Michaelis–Menten enzyme kinetics for both isomerase activities in wild-type PriA from S. coelicolor and in selected single-residue monofunctional mutants, identified after Escherichia coliin vivo complementation experiments. Structural and functional analyses of a hitherto unnoticed residue contained on the functionally important β → α loop 5, namely, Arg139, which was postulated on structural grounds to be important for the dual-substrate specificity of PriA, is presented for the first time. Indeed, enzyme kinetics analyses done on the mutant variants PriA_Ser81Thr and PriA_Arg139Asn showed that these residues, which are contained on β → α loops and in close proximity to the N-terminal phosphate-binding site, are essential solely for the phosphoribosyl anthranilate isomerase activity of PriA. Moreover, analysis of the X-ray crystallographic structure of PriA_Arg139Asn elucidated at 1.95 Å herein strongly implicates the occurrence of conformational changes in this β → α loop as a major structural feature related to the evolution of the dual-substrate specificity of PriA. It is suggested that PriA has evolved by tuning a fine energetic balance that allows the sufficient degree of structural flexibility needed for accommodating two topologically dissimilar substrates—within a bifunctional and thus highly constrained active site—without compromising its structural stability

    NMR Provides Unique Insight into the Functional Dynamics and Interactions of Intrinsically Disordered Proteins

    No full text
    International audienceIntrinsically disordered proteins are ubiquitous throughout all known proteomes, playing essential roles in all aspects of cellular and extracellular biochemistry. To understand their function, it is necessary to determine their structural and dynamic behavior and to describe the physical chemistry of their interaction trajectories. Nuclear magnetic resonance is perfectly adapted to this task, providing ensemble averaged structural and dynamic parameters that report on each assigned resonance in the molecule, unveiling otherwise inaccessible insight into the reaction kinetics and thermodynamics that are essential for function. In this review, we describe recent applications of NMR-based approaches to understanding the conformational energy landscape, the nature and time scales of local and long-range dynamics and how they depend on the environment, even in the cell. Finally, we illustrate the ability of NMR to uncover the mechanistic basis of functional disordered molecular assemblies that are important for human health

    Intrinsically Disordered Tardigrade Proteins Self-Assemble into Fibrous Gels in Response to Environmental Stress.

    No full text
    International audienceTardigrades are remarkable for their ability to survive harsh stress conditions as diverse as extreme temperature and desiccation. The molecular mechanisms that confer this unusual resistance to physical stress remain unknown. Recently, tardigrade-unique intrinsically disordered proteins have been shown to play an essential role in tardigrade anhydrobiosis. Here, we characterize the conformational and physical behaviour of CAHS-8 from Hypsibius exemplaris. NMR spectroscopy reveals that the protein comprises an extended central helical domain flanked by disordered termini. Upon concentration, the protein is shown to successively form oligomers, long fibres, and finally gels constituted of fibres in a strongly temperature-dependent manner. The helical domain forms the core of the fibrillar structure, with the disordered termini remaining highly dynamic within the gel. Soluble proteins can be encapsulated within cavities in the gel, maintaining their functional form. The ability to reversibly form fibrous gels may be associated with the enhanced protective properties of these proteins

    Molecular basis of host-adaptation interactions between influenza virus polymerase PB2 subunit and ANP32A

    No full text
    International audienceAvian influenza polymerase undergoes host adaptation in order to efficiently replicate in human cells. Adaptive mutants are localised on the C-terminal (627-NLS) domains of the PB2 subunit. In particular, mutation of PB2 residue 627 from E to K rescues polymerase activity in mammalian cells. A host transcription regulator ANP32A, comprising a long C-terminal intrinsically disordered domain (IDD), is responsible for this adaptation. Human ANP32A IDD lacks a 33 residue insertion compared to avian ANP32A, and this deletion restricts avian influenza polymerase activity. We used NMR to determine conformational ensembles of E627 and K627 forms of 627-NLS of PB2 in complex with avian and human ANP32A. Human ANP32A IDD transiently binds to the 627 domain, exploiting multivalency to maximise affinity. E627 interrupts the polyvalency of the interaction, an effect compensated by an avian-unique motif in the IDD. The observed binding mode is maintained in the context of heterotrimeric influenza polymerase, placing ANP32A in the immediate vicinity of known host-adaptive PB2 mutants

    Multivalent Dynamic Colocalization of Avian Influenza Polymerase and Nucleoprotein by Intrinsically Disordered ANP32A Reveals the Molecular Basis of Human Adaptation

    No full text
    International audienceAdaptation of avian influenza RNA polymerase (FluPol) to human cells requires mutations on the 627-NLS domains of the PB2 subunit. The E627K adaptive mutation compensates a 33-amino-acid deletion in the acidic intrinsically disordered domain of the host transcription regulator ANP32A, a deletion that restricts FluPol activity in mammalian cells. The function of ANP32A in the replication transcription complex and in particular its role in host restriction remains poorly understood. Here we characterize ternary complexes formed between ANP32A, FluPol, and the viral nucleoprotein, NP, supporting the putative role of ANP32A in shuttling NP to the replicase complex. We demonstrate that while FluPol and NP can simultaneously bind distinct linear motifs on avian ANP32A, the deletion in the shorter human ANP32A blocks this mode of colocalization. NMR reveals that NP and human-adapted FluPol, containing the E627 K mutation, simultaneously bind the identical extended linear motif on human ANP32A in an electrostatically driven, highly dynamic and multivalent ternary complex. This study reveals a probable molecular mechanism underlying host adaptation, whereby E627K, which enhances the basic surface of the 627 domain, is selected to confer the necessary multivalent properties to allow ANP32A to colocalize NP and FluPol in human cells
    corecore