137 research outputs found

    Continuity of real functions in high school: a teaching sequence based on limits and topology

    Get PDF
    International audienceIt is well known that students have difficulties with the concept of continuity, specifically on points of discontinuity, and concepts like limits and infinity. In Italian textbooks, the continuity of functions is usually defined using limits, while an intuitive characterization of continuous functions is proposed without providing the students with formal tools to use it, like “the graphs of continuous functions can be drawn without lifting the pencil out of the paper”. Limits are one of the most complex subjects to learn and are usually introduced in an algorithmic way, without a true comprehension of the subject. We argue that introducing the definition of continuous functions using limits is problematic and we designed and tested a teaching sequence to investigate the potentiality of including a topological approach in high school

    Photobiomodulation at Defined Wavelengths Regulates Mitochondrial Membrane Potential and Redox Balance in Skin Fibroblasts

    Get PDF
    Starting from the discovery of phototherapy in the beginning of the last century, photobiomodulation (PBM) has been defined in late 1960s and, since then, widely described in different in vitro models. Robust evidence indicates that the effect of light exposure on the oxidative state of the cells and on mitochondrial dynamics, suggesting a great therapeutic potential. The translational scale-up of PBM, however, has often given contrasting and confusing results, mainly due to light exposure protocols which fail to adequately control or define factors such as emitting device features, emitted light characteristics, exposure time, cell target, and readouts. In this in vitro study, we describe the effects of a strictly controlled light-emitting diode (LED)-based PBM protocol on human fibroblasts, one of the main cells involved in skin care, regeneration, and repair. We used six emitter probes at different wavelengths (440, 525, 645, 660, 780, and 900 nm) with the same irradiance value of 0.1 mW/cm2, evenly distributed over the entire surface of the cell culture well. The PBM was analyzed by three main readouts: (i) mitochondrial potential (MitoTracker Orange staining), (ii) reactive oxygen species (ROS) production (CellROX staining); and (iii) cell death (nuclear morphology). The assay was also implemented by cell-based high-content screening technology, further increasing the reliability of the data. Different exposure protocols were also tested (one, two, or three subsequent 20 s pulsed exposures at 24 hr intervals), and the 645 nm wavelength and single exposure chosen as the most efficient protocol based on the mitochondrial potential readout, further confirmed by mitochondrial fusion quantification. This protocol was then tested for its potential to prevent H2O2-induced oxidative stress, including modulation of the light wave frequency. Finally, we demonstrated that the controlled PBM induced by the LED light exposure generates a preconditioning stimulation of the mitochondrial potential, which protects the cell from oxidative stress damage

    Emergence of Urease-Negative Klebsiella pneumoniae ST340 Carrying an IncP6 Plasmid-Mediated blaKPC-2Gene

    Get PDF
    An unusual biotype of KPC-2-producing Klebsiella pneumoniae (KPC-Kpn) isolates was detected in Corrientes, Argentina, which, to their isolation date, had been free of KPC-Kpn outbreaks. Our aim was to describe the clinical epidemiology focused on genomic characterization of atypical urease-negative KPC-Kpn clinical isolates belonging to the high-risk hospital-associated clonal lineage ST340/CC258. Thirteen isolates were recovered, all of them from inpatients with KPC-Kpn infection (August 2015 to January 2016). These isolates displayed identical enterobacterial repetitive intergenic consensus-PCR electropherotype belonging to a single clonal sequence type ST340. Whole genome sequencing was performed on two KPC-Kpn and the resistome analyses revealed the following acquired resistance genes: blaKPC-2, blaCTX-M-15, blaOXA-1, blaSHV-11, aac(3)-IId, aph(3′)-Ia, aac(6′)-Ib-cr, sul1, dfrA14, catB3, fosA, and arr-3. Mutations in GyrA (S83I) and ParC (S80I) were also identified. Among the virulence determinants, yersiniabactin was detected in both strains, specifically the ybt9 locus located in ICEKp3. Five plasmid incompatibility groups were observed in this clone and an unusual IncP6 plasmid bearing blaKPC-2 gene (named pKpn3KP) was fully characterized. In this study, we present the first draft genome sequences of two clinical isolates of KPC-2/CTX-M-15-producing K. pneumoniae belonging to the high-risk clonal lineage ST340/CC258 associated with nosocomial outbreaks in Argentina.Fil: Di Conza, José Alejandro. Universidad de Buenos Aires. Facultad de Farmacia y BioquÍmica. Instituto de Investigaciones En Bacteriología y Virología Molecular (IBaViM); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Badaracco, María Elvira. Instituto de Cardiologia de Corrientes Juana Francisca Cabral.; ArgentinaFil: Calza, Yanina. Instituto de Cardiologia de Corrientes Juana Francisca Cabral.; ArgentinaFil: Fontana, Herrison. Universidade de Sao Paulo; BrasilFil: Lincopan, Nilton. Universidade de Sao Paulo; BrasilFil: Peña, Laura. Instituto de Cardiologia de Corrientes Juana Francisca Cabral.; ArgentinaFil: Gutkind, Gabriel Osvaldo. Universidad de Buenos Aires. Facultad de Farmacia y BioquÍmica. Instituto de Investigaciones En Bacteriología y Virología Molecular (IBaViM); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Early csf biomarkers and late functional outcomes in spinal cord injury. A pilot study

    Get PDF
    open9noThis research was funded by the Italian Ministry of Health—call “Ricerca Finalizzata 2010” (project code RF-2010-2315118).Although, biomarkers are regarded as an important tool for monitoring injury severity and treatment efficacy, and for predicting clinical evolution in many neurological diseases and disorders including spinal cord injury, there is still a lack of reliable biomarkers for the assessment of clinical course and patient outcome. In this study, a biological dataset of 60 cytokines/chemokines, growth factorsm and intracellular and extracellular matrix proteins, analyzed in CSF within 24 h of injury, was used for correlation analysis with the clinical dataset of the same patients. A heat map was generated of positive and negative correlations between biomarkers and clinical rating scale scores at discharge, and between biomarkers and changes in clinical scores during the observation period. Using very stringent statistical criteria, we found 10 molecules which correlated with clinical scores at discharge, and five molecules, which correlated with changes in clinical scores. The proposed methodology may be useful for generating hypotheses regarding “predictive” and “treatment effectiveness” biomarkers, thereby suggesting potential candidates for disease‐modifying therapies using a “bed‐to‐bench” approach.openCapirossi R.; Piunti B.; Fernandez M.; Maietti E.; Rucci P.; Negrini S.; Giovannini T.; Kiekens C.; Calza' L.Capirossi R.; Piunti B.; Fernandez M.; Maietti E.; Rucci P.; Negrini S.; Giovannini T.; Kiekens C.; Calza' L

    Identification of stably expressed reference small non-coding RNAs for microRNA quantification in high-grade serous ovarian carcinoma tissues

    Get PDF
    MicroRNAs (miRNAs) belong to a family of small non‐coding RNAs (sncRNAs) playing important roles in human carcinogenesis. Multiple investigations reported miRNAs aberrantly expressed in several cancers, including high‐grade serous ovarian carcinoma (HGS‐OvCa). Quantitative PCR is widely used in studies investigating miRNA expression and the identification of reliable endogenous controls is crucial for proper data normalization. In this study, we aimed to experimentally identify the most stable reference sncRNAs for normalization of miRNA qPCR expression data in HGS‐OvCa. Eleven putative reference sncRNAs for normalization (U6, SNORD48, miR‐92a‐3p, let‐7a‐5p, SNORD61, SNORD72, SNORD68, miR‐103a‐3p, miR‐423‐3p, miR‐191‐5p, miR‐16‐5p) were analysed on a total of 75 HGS‐OvCa and 30 normal tissues, using a highly specific qPCR. Both the normal tissues considered to initiate HGS‐OvCa malignant transformation, namely ovary and fallopian tube epithelia, were included in our study. Stability of candidate endogenous controls was evaluated using an equivalence test and validated by geNorm and NormFinder algorithms. Combining results from the three different statistical approaches, SNORD48 emerged as stably and equivalently expressed between malignant and normal tissues. Among malignant samples, considering groups based on residual tumour, miR‐191‐5p was identified as the most equivalent sncRNA. On the basis of our results, we support the use of SNORD48 as best reference sncRNA for relative quantification in miRNA expression studies between HGS‐OvCa and normal controls, including the first time both the normal tissues supposed to be HGS‐OvCa progenitors. In addition, we recommend miR‐191‐5p as best reference sncRNA in miRNA expression studies with prognostic intent on HGS‐OvCa tissues

    Targeting of multiple metabolites in neural cells monitored by using protein-based carbon nanotubes

    Get PDF
    Microdevices dedicated to monitor metabolite levels have recently enabled many applications in the field of cell analysis, to monitor cell growth and development of numerous cell lines. By combining the traditional technology used for electrochemical biosensors with nanoscale materials, it is possible to develop miniaturized metabolite biosensors with unique properties of sensitivity and detection limit. In particular, enzymes tend to adsorb onto carbon nanotubes and their optical or electrical activity can perturb the electronic properties. In the present work we propose multi-walled carbon nanotube-based biosensors to monitor a cell line highly sensitive to metabolic alterations, in order to evaluate lactate production and glucose uptake during different cell states. We achieve sensors for both lactate and glucose, with sensitivities of 40.1 mu A mM(-1) cm(-2) and 27.7 mu A mM(-1) cm(-2), and detection limits of 28 mu M and 73 mu M, respectively. This nano-biosensing technology is used to provide new information on cell line metabolism during proliferation and differentiation, which are unprecedented in cell biology. (C) 2011 Elsevier B.V. All rights reserved

    Evaluación clínica aleatoria de restauraciones tra y de resina compuesta clase II.

    Get PDF
    La caries dental es la patología más prevalente de la cavidad bucal. Diversos recursos para su prevención y tratamiento se han propuesto desde su identificación, asociando los abordajes convencionales actuales de las lesiones por caries con los elementos de mayor temor en la figura del odontólogo: la infiltración anestésica y efecto sonoro y vibratorio del instrumental rotatorio para la remoción de tejido cariado. El Tratamiento Restaurador Atraumático (ART) se ha reportado en publicaciones científicas como una alternativa exitosa, en la cual se remueve tejido descompuesto por caries con instrumental de excavación manual, restaurando la cavidad resultante con un material bioactivo, con características adhesivas. Sin embargo, dichos estudios clínicos revelan bajas tasas de sobrevida para cavidades de múltiples superficies, adjudicando el fracaso de las restauraciones a deficiencias del material de obturación. En función de estos hallazgos, la industria de los materiales dentales ha desarrollado nuevos productos superadores que podrían igualar a aquellos utilizados en técnicas convencionales, con la ventaja de asegurar una respuesta biológica más eficaz en la reparación del daño ocasionado por la enfermedad de caries, sustituyendo el uso de materiales resinosos o metálicos para la restauración. El objetivo general del presente estudio es comparar restauraciones convencionales y ART en cavidades de múltiples superficies (clase II) en premolares y molares

    d aspartate exerts an opposing role upon age dependent nmdar related synaptic plasticity and memory decay

    Get PDF
    In the present study, we demonstrated that D-aspartate acts as an _in vitro_ and _in vivo_ neuromodulatory molecule upon hippocampal NMDAR transmission. Accordingly, we showed that this D-amino acid, widely expressed during embryonic phase, was able to strongly influence hippocampus-related functions at adulthood. Thus, while up-regulated levels of D-aspartate increased LTP and spatial memory in four-month old adult mice, the prolonged deregulation of this molecule in thirteen-month old animals induced a substantial acceleration of age-dependent decay of synaptic plasticity and cognitive functions. Moreover, we highlighted a role for D-aspartate in enhancing NMDAR-dependent synaptic plasticity through an inducible "turn-on/turn-off-like mechanism". Strikingly, we also showed that D-aspartate, when administered to aged mice, strongly rescued their physiological synaptic decay and attenuated their cognitive deterioration. In conclusion, our data suggest a tantalizing hypothesis for which this in-embryo-occurring D-amino acid, might disclose plasticity windows in the aging brain
    corecore