5,519 research outputs found

    Accretion Disks Around Young Objects. III. Grain Growth

    Full text link
    We present detailed models of irradiated T Tauri disks including dust grain growth with power-law size distributions. The models assume complete mixing between dust and gas and solve for the vertical disk structure self-consistentlyincluding the heating effects of stellar irradiation as well as local viscous heating. For a given total dust mass, grain growth is found to decrease the vertical height of the surface where the optical depth to the stellar radiation becomes unit and thus the local irradiation heating, while increasing the disk emission at mm and sub-mm wavelengths. The resulting disk models are less geometrically thick than our previous models assuming interstellar medium dust, and agree better with observed spectral energy distributions and images of edge-on disks, like HK Tau/c and HH 30. The implications of models with grain growth for determining disk masses from long-wavelength emission are considered.Comment: 29 pages, including 11 figures and 1 table, APJ accepte

    Accretion Disks Around Young Objects. II. Tests of Well-Mixed Models with Ism Dust

    Get PDF
    We construct detailed vertical structure models of irradiated accretion disks around T Tauri stars with interstellar medium dust uniformly mixed with gas. The dependence of the structure and emission properties on mass accretion rate, viscosity parameter, and disk radius is explored using these models. The theoretical spectral energy distributions (SEDs) and images for all inclinations are compared with observations of the entire population of Classical T Tauri stars (CTTS) and Class I objects in Taurus. In particular, we find that the median near-infrared fluxes can be explained within the errors with the most recent values for the median accretion rates for CTTS. We further show that the majority of the Class I sources in Taurus cannot be Class II sources viewed edge-on because they are too luminous and their colors would be consistent with disks seen only in a narrow range of inclinations. Our models appear to be too geometrically thick at large radii, as suggested by: (a) larger far-infrared disk emission than in the typical SEDs of T Tauri stars; (b) wider dark dust lanes in the model images than in the images of HH30 and HK Tau/c; and (c) larger predicted number of stars extincted by edge-on disks than consistent with current surveys. The large thickness of the model is a consequence of the assumption that dust and gas are well-mixed, suggesting that some degree of dust settling may be required to explain the observations.Comment: 41 pages, 13 figures, accepted in Ap

    Disk evolution in the Ori OB1 association

    Full text link
    We analyze multi-band photometry of a subsample of low mass stars in the associations Ori OB1a and 1b discovered during the CIDA Orion Variability Survey, which have ages of 7 - 10 Myr and 3 - 5 Myr, respectively. We obtained UBVRcIc photometry at Mt. Hopkins for 6 Classical T Tauri stars (CTTS) and 26 Weak T Tauri stars (WTTS) in Ori OB1a, and for 21 CTTS and 2 WTTS in Ori OB1b. We also obtained L band photometry for 14 CTTS at Mt. Hopkins, and 10um and 18um photometry with OSCIR at Gemini for 6 CTTS; of these, all 6 were detected at 10um while only one was detected at 18um. We estimate mass accretion rates from the excess luminosity at U, and find that they are consistent with determinations for a number of other associations, with or without high mass star formation. The observed decrease of mass accretion rate with age is qualitatively consistent with predictions of viscous evolution of accretion disks. We find an overall decrease of disk emission from Taurus to Ori OB1b to Ori OB1a. This decrease implies that significant grain growth and settling towards the midplane has taken place in the inner disks of Ori OB1. We compare the SED of the star detected at both 10um and 18um with disk models for similar stellar and accretion parameters. We find that the low <= 18 um fluxes of this Ori OB1b star cannot be due to the smaller disk radius expected from viscous evolution in the presence of the FUV radiation fields from the OB stars in the association. Instead, we find that the disk of this star is essentially a flat disk, with little if any flaring, indicating a a significant degree of dust settling towards the midplane, as expected from dust evolution in protoplanetary disks.Comment: 35 pages, 11 figures, to appear in the Astronomical Journal. Full resolution figures in http://www.cida.ve/~briceno/publications

    The Effects of UV Continuum and Lyman alpha Radiation on the Chemical Equilibrium of T Tauri Disks

    Full text link
    We show in this Letter that the spectral details of the FUV radiation fields have a large impact on the chemistry of protoplanetary disks surrounding T Tauri stars. We show that the strength of a realistic stellar FUV field is significantly lower than typically assumed in chemical calculations and that the radiation field is dominated by strong line emission, most notably Lyman alpha radiation. The effects of the strong Lyman alpha emission on the chemical equilibrium in protoplanetary disks has previously been unrecognized. We discuss the impact of this radiation on molecular observations in the context of a radiative transfer model that includes both direct attenuation and scattering. In particular, Lyman alpha radiation will directly dissociate water vapor and may contribute to the observed enhancements of CN/HCN in disks.Comment: 14 pages, 4 figures, accepted by ApJ Letter

    True and apparent scaling: the proximity of the markov- switching multifractal model to long-range dependence

    Get PDF
    In this paper, we consider daily financial data of a collection of different stock market indices, exchange rates, and interest rates, and we analyze their multi-scaling properties by estimating a simple specification of the Markov-switching multifractal model (MSM). In order to see how well the estimated models capture the temporal dependence of the data, we estimate and compare the scaling exponents H(q) (for q = 1, 2) for both empirical data and simulated data of the estimated MSM models. In most cases the multifractal model appears to generate ‘apparent’ long memory in agreement with the empirical scaling laws

    Discovery of a Planetary-Mass Brown Dwarf with a Circumstellar Disk

    Full text link
    Using the Hubble Space Telescope, the 4 m Blanco telescope at the Cerro Tololo Inter-American Observatory, and the Spitzer Space Telescope, we have performed deep imaging from 0.8 to 8 um of the southern subcluster in the Chamaeleon I star-forming region. In these data, we have discovered an object, Cha 110913-773444, whose colors and magnitudes are indicative of a very low-mass brown dwarf with a circumstellar disk. In a near-infrared spectrum of this source obtained with the Gemini Near-Infrared Spectrograph, the presence of strong steam absorption confirms its late-type nature (>=M9.5) while the shapes of the H- and K-band continua and the strengths of the Na I and K I lines demonstrate that it is a young, pre-main-sequence object rather than a field dwarf. A comparison of the bolometric luminosity of Cha 110913-773444 to the luminosities predicted by the evolutionary models of Chabrier and Baraffe and Burrows and coworkers indicates a mass of 8+7/-3 M_Jup, placing it fully within the mass range observed for extrasolar planetary companions (M<=15 M_Jup). The spectral energy distribution of this object exhibits mid-infrared excess emission at >5 um, which we have successfully modeled in terms of an irradiated viscous accretion disk with M'<=10e-12 M_sun/year. Cha 110913-773444 is now the least massive brown dwarf observed to have a circumstellar disk, and indeed is one of the least massive free-floating objects found to date. These results demonstrate that the raw materials for planet formation exist around free-floating planetary-mass bodies.Comment: 5 pages, accepted to Astrophysical Journal Letter

    Probing the embedded YSOs of the R CrA region through VLT-ISAAC spectroscopy

    Full text link
    Near IR spectra obtained with ISAAC at VLT, have been used to pose constraints on the evolutionary state and accretion properties of a sample of five embedded YSOs located in the R CrA core. This sample includes three Class I sources (HH100 IR, IRS2 and IRS5), and two sources with NIR excesses (IRS6 and IRS3). Absorption lines have been detected in the medium resolution spectra of all the observed targets, together with emission lines likely originating in the disk-star-wind connected regions. We derived spectral types, veiling and stellar luminosity of the five observed sources, which in turn have been used to infer their mass and age adopting pre-main sequence evolutionary tracks. We find that in HH100 IR and IRS2 most of the bolometric luminosity is due to accretion, while the other three investigated sources, including the Class I object IRS5a, present a low accretion activity (L_{acc}/L_{bol} < 0.2). We observe a general correlation between the accretion luminosity, the IR veiling and the emission line activity of the sources. A correlation between the accretion activity and the spectral energy distribution slope is recognizable but with the notable exception of IRS5a. Our analysis therefore shows how the definition of the evolutionary stage of deeply embedded YSOs by means of IR colors needs to be more carefully refined.Comment: 17 pages, 13 figures, accepted on A&

    Probing the Dust and Gas in the Transitional Disk of CS Cha with Spitzer

    Full text link
    Here we present the Spitzer IRS spectrum of CS Cha, a member of the ~2 Myr old Chamaeleon star-forming region, which reveals an optically thick circumstellar disk truncated at ~43 AU, the largest hole modeled in a transitional disk to date. Within this inner hole, ~5x10^-5 lunar masses of dust are located in a small optically thin inner region which extends from 0.1 to 1 AU. In addition, the disk of CS Cha has bigger grain sizes and more settling than the previously modeled transitional disks DM Tau, GM Aur, and CoKu Tau/4, suggesting that CS Cha is in a more advanced state of dust evolution. The Spitzer IRS spectrum also shows [Ne II] 12.81 micron fine-structure emission with a luminosity of 1.3x10^29 ergs s^-1, indicating that optically thin gas is present in this ~43 AU hole, in agreement with H_alpha measurements and a UV excess which indicate that CS Cha is still accreting 1.2x10^-8 M_sun yr^-1. We do not find a correlation of the [Ne II] flux with L_X, however, there is a possible correlation with mass accretion rate, which if confirmed would suggest that EUV fluxes due to accretion are the main agent for formation of the [Ne II] line.Comment: accepted to ApJ Letter

    Spitzer observations of the Orion OB1 association: disk census in the low mass stars

    Full text link
    We present new Spitzer Space Telescope observations of two fields in the Orion OB1 association. We report here IRAC/MIPS observations for 115 confirmed members and 41 photometric candidates of the ~10 Myr 25 Orionis aggregate in the OB1a subassociation, and 106 confirmed members and 65 photometric candidates of the 5 Myr region located in the OB1b subassociation. The 25 Orionis aggregate shows a disk frequency of 6% while the field in the OB1b subassociation shows a disk frequency of 13%. Combining IRAC, MIPS and 2MASS photometry we place stars bearing disks in several classes: stars with optically thick disks (class II systems), stars with an inner transitional disks (transitional disk candidates) and stars with "evolved disks"; the last exhibit smaller IRAC/MIPS excesses than class II systems. In all, we identify 1 transitional disk candidate in the 25 Orionis aggregate and 3 in the OB1b field; this represents ~10% of the disk bearing stars, indicating that the transitional disk phase can be relatively fast. We find that the frequency of disks is a function of the stellar mass, suggesting a maximum around stars with spectral type M0. Comparing the infrared excess in the IRAC bands among several stellar groups we find that inner disk emission decays with stellar age, showing a correlation with the respective disk frequencies. The disk emission at the IRAC and MIPS bands in several stellar groups indicates that disk dissipation takes place faster in the inner region of the disks. Comparison with models of irradiated accretion disks, computed with several degrees of settling, suggests that the decrease in the overall accretion rate observed in young stellar groups is not sufficient to explain the weak disk emission observed in the IRAC bands for disk bearing stars with ages 5 Myr or older.Comment: Accepted in the Astrophysical Journa
    • 

    corecore