We construct detailed vertical structure models of irradiated accretion disks
around T Tauri stars with interstellar medium dust uniformly mixed with gas.
The dependence of the structure and emission properties on mass accretion rate,
viscosity parameter, and disk radius is explored using these models. The
theoretical spectral energy distributions (SEDs) and images for all
inclinations are compared with observations of the entire population of
Classical T Tauri stars (CTTS) and Class I objects in Taurus. In particular, we
find that the median near-infrared fluxes can be explained within the errors
with the most recent values for the median accretion rates for CTTS. We further
show that the majority of the Class I sources in Taurus cannot be Class II
sources viewed edge-on because they are too luminous and their colors would be
consistent with disks seen only in a narrow range of inclinations. Our models
appear to be too geometrically thick at large radii, as suggested by: (a)
larger far-infrared disk emission than in the typical SEDs of T Tauri stars;
(b) wider dark dust lanes in the model images than in the images of HH30 and HK
Tau/c; and (c) larger predicted number of stars extincted by edge-on disks than
consistent with current surveys. The large thickness of the model is a
consequence of the assumption that dust and gas are well-mixed, suggesting that
some degree of dust settling may be required to explain the observations.Comment: 41 pages, 13 figures, accepted in Ap