193 research outputs found

    Estudio e implementación de la dinámica de modelos 'rate-and-state' para abordar problemas de fricción

    Get PDF
    Durante más de dos siglos, la fricción entre sólidos ha sido descrita mediante las leyes clásicas de Amontons-Coulomb. Sin embargo, en las últimas décadas han aparecido evidencias que han revelado que estas no constityen más que una aproximación de la realidad, requeriéndose de nuevas teorías que arrojasen cierta luz sobre estudios tan importantes como es la fricción entre rocas en fenómenos sísmicos. Actualmente, la fricción seca entre sólidos (fricción entre superficies no lubricadas) es descrita mediante las llamadas teorías de 'rate-and-state', que establecen que la fricción depende de la velocidad de deslizamiento relativo entre las superficies de contacto (rate) y de su estado (state). En el presente trabajo se pretende estudiar en profundidad las teorías actuales existentes para abordar problemas de fricción entre sólidos, así como su visualización, con el objetivo de una mejor comprensión de estas.<br /

    Understanding the potential-induced activation of a cobalt MOF electrocatalyst for the oxygen evolution reaction

    Get PDF
    Metal–organic frameworks (MOFs) are attractive porous materials for electrocatalytic applications associated with carbon-free energy storage and conversion. This type of material usually requires a post-treatment to be used as electrocatalyst. The present work comprehensively investigates the electrochemical activation of a cobalt-MOF@Nafion composite that produces outstanding electrocatalytic performance for the water oxidation reaction at neutral pH. A detailed electrochemical characterization reveals that the electroactivation of the composite requires the participation of the oxygen evolution reaction (OER) and leads to a significant increase in the electroactive population of cobalt centers. It is shown that an increase of the applied activation potential in the OER region results in a faster electroactivation of the Co-MOF without affecting the intrinsic electrocatalytic properties of the active cobalt centers, as evidenced by the unique linear correlation between the electrocatalytic OER current and the population of electroactive cobalt. In addition, at structural level, it is shown that the electrochemical activation causes the partial disruption of the Nafion adlayer, as well as morphological changes of the Co–MOF particles from a compact, rounded morphology, before electrochemical activation, to a more open and expanded structure, after electroactivation; with the concomitant increase of the number of surface–exposed cobalt centers. Interestingly, these cobalt centers retain their coordinative chemistry and their laminar distribution in the nanosheets at the nanoscale, which is consistent with the preservation of their intrinsic electrocatalytic activity after potential–induced activation. In this scenario, these results suggest that only the electroactivated cobalt centers with good accessibility to the electrolyte are electrochemically active. This work provides a better understanding of the processes and structural changes underlying the electrochemical activation at neutral pH of a Co–MOF for boosting the electrocatalytic water oxidation reaction9 página

    Plasmodium ovale malaria acquired in central Spain

    Get PDF
    3 p.We describe a case of locally acquired Plasmodium ovale malaria in Spain. The patient was a Spanish woman who had never traveled out of Spain and had no other risk factors for malaria. Because patients with malaria may never have visited endemic areas, occasional transmission of malaria to European hosts is a diagnostic and clinical challenge

    Cobalt Metal-Organic Framework based on two dinuclear secondary building units for electrocatalytic oxygen evolution

    Get PDF
    The synthesis of a new microporous metal-organic framework (MOF) based on two secondary building units, with dinuclear cobalt centers, has been developed. The employment of a well-defined cobalt cluster results in an unusual topology of the Co2-MOF, where one of the cobalt centers has three open coordination positions, which has no precedent in MOF materials based on cobalt. Adsorption isotherms have revealed that Co2-MOF is in the range of best CO2 adsorbents among the carbon materials, with very high CO2/CH4 selectivity. On the other hand, dispersion of Co2-MOF in an alcoholic solution of Nafion gives rise to a composite (Co2-MOF@Nafion) with great resistance to hydrolysis in aqueous media and good adherence to graphite electrodes. In fact, it exhibits high electrocatalytic activity and robustness for the oxygen evolution reaction (OER), with a turnover frequency number value superior to those reported for similar electrocatalysts. Overall, this work has provided the basis for the rational design of new cobalt OER catalysts and related materials employing well-defined metal clusters as directing agents of the MOF structure

    Cobalt metal-organic framework based on layered double nanosheets for enhanced electrocatalytic water oxidation in neutral media

    Get PDF
    A new cobalt metal-organic framework (2D-Co-MOF) based on well-defined layered double cores that are strongly connected by intermolecular bonds has been developed. Its 3D structure is held together by π-π stacking interactions between the labile pyridine ligands of the nanosheets. In aqueous solution, the axial pyridine ligands are exchanged by water molecules, producing a delamination of the material, where the individual double nanosheets preserve their structure. The original 3D layered structure can be restored by a solvothermal process with pyridine, so that the material shows a "memory effect" during the delamination-pillarization process. Electrochemical activation of a 2D-Co-MOF@Nafion-modified graphite electrode in aqueous solution improves the ionic migration and electron transfer across the film and promotes the formation of the electrocatalytically active cobalt species for the oxygen evolution reaction (OER). The so-activated 2D-Co-MOF@Nafion composite exhibits an outstanding electrocatalytic performance for the OER at neutral pH, with a TOF value (0.034 s-1 at an overpotential of 400 mV) and robustness superior to those reported for similar electrocatalysts under similar conditions. The particular topology of the delaminated nanosheets, with quite distant cobalt centers, precludes the direct coupling between the electrocatalytically active centers of the same sheet. On the other hand, the increase in ionic migration across the film during the electrochemical activation stage rules out the intersheet coupling between active cobalt centers, as this scenario would impair electrolyte permeation. Altogether, the most plausible mechanism for the O-O bond formation is the water nucleophilic attack to single Co(IV)-oxo or Co(III)-oxyl centers. Its high electrochemical efficiency suggests that the presence of nitrogen-containing aromatic equatorial ligands facilitates the water nucleophilic attack, as in the case of the highly efficient cobalt porphyrins

    Voltammetric study of the adsorbed thermophilic plastocyanin from Phormidium laminosum up to 90 °c

    Get PDF
    Redox thermodynamics and kinetics of plastocyanin from Phormidium laminosum, and of azurin from Pseudonomas aeruginosa, have been investigated as a function of temperature by protein film voltammetry. To this purpose, both proteins have been physisorbed on a pyrolytic graphite edge electrode. A pronounced negative shift of the plastocyanin standard potential, compared to a slight shift in the case of azurin, has been found upon increasing the temperature. Hence, significant conformational and/or solvation changes accompany the redox conversion of plastocyanin. Lower electron transfer rate constants (by c.a. one order of magnitude) and higher activation enthalpies have been found for plastocyanin as compared to azurin. The voltammetric response of azurin vanishes irreversibly at temperatures close to 60 °C, whereas the redox properties of plastocyanin remain unaltered, except for some loss of electroactive protein, after heating the electrode at temperatures as high as 90 °C.Ministerio de Economía y Competitividad CTQ 2008-00371, BFU2009-07190Junta de Andalucía P07-FQM-02492, P06-CVI-0171

    Optimisation of large-radius jet reconstruction for the ATLAS detector in 13 TeV proton–proton collisions

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UA

    Bimetallic Intersection in PdFe@FeOx-C Nanomaterial for Enhanced Water Splitting Electrocatalysis

    Get PDF
    Supported Fe-doped Pd-nanoparticles (NPs) are prepared via soft transfor-mation of a PdFe-metal oraganic framework (MOF). The thus synthesized bimetallic PdFe-NPs are supported on FeOx@C layers, which are essential for developing well-defined and distributed small NPs, 2.3 nm with 35% metal loading. They are used as bifunctional nanocatalysts for the electro-catalytic water splitting process. They display superior mass activity for the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER), both in alkaline and acid media, compared with those obtained for benchmarking platinum HER catalyst, and ruthenium, and iridium oxide OER catalysts. PdFe-NPs also exhibit outstanding stability against sintering that can be explained by the protecting role of graphitic carbon layers provided by the organic linker of the MOF. Additionally, the superior electrocatalytic performance of the bimetallic PdFe-NPs compared with those of monometallic Pd/C NPs and FeOx points to a synergetic effect induced by Fe-Pd interactions that facilitates the water splitting reaction. This is supported by additional characterization of the PdFe-NPs prior and post electrolysis by TEM, XRD, X-ray photoelectron spectroscopy, and Raman revealing that dispersed PdFe NPs on FeOx@C promote interactions between Pd and Fe, most likely to be Pd-O-Fe active centers

    A search for the Zγ decay mode of the Higgs boson in pp collisions at √s = 13 TeV with the ATLAS detector

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UA
    corecore