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Abstract  

A new cobalt metal-organic framework (2D-Co-MOF) based on well-defined layered double 

cores that are strongly connected by intermolecular bonds has been developed. Its 3D 

structure is held together by π-π stacking interactions between the labile pyridine ligands of 

the nanosheets. In aqueous solution, the axial pyridine ligands are exchanged by water 

molecules, producing a delamination of the material, where the individual double nanosheets 

preserve their structure. The original 3D layered structure can be restored by a solvothermal 

process with pyridine, so that the material shows a "memory effect" during the delamination-

pillarization process. Electrochemical activation of a 2D-Co-MOF@Nafion-modified graphite 

electrode in aqueous solution improves the ionic migration and electron transfer across the 

film and promotes the formation of the electrocatalytically active cobalt species for the oxygen 

evolution reaction (OER). The so-activated 2D-Co-MOF@Nafion composite exhibits an 

outstanding electrocatalytic performance for the OER at neutral pH, with a TOF value (0.034 

s-1 at an overpotential of 400 mV) and robustness superior to those reported for similar 

electrocatalysts under similar conditions. The particular topology of the delaminated 

nanosheets, with quite distant cobalt centers, precludes the direct coupling between the 

electrocatalytically active centers of the same sheet. On the other hand, the increase in ionic 

migration across the film during the electrochemical activation stage rules out the intersheet 

coupling between active cobalt centers, as this scenario would impair electrolyte permeation. 

Altogether, the most plausible mechanism for the O-O bond formation is the water nucleophilic 

attack to single Co(IV)-oxo or Co(III)-oxyl centers. Its high electrochemical efficiency suggests 

that the presence of nitrogen-containing aromatic equatorial ligands facilitates the water 

nucleophilic attack, as in the case of the highly efficient cobalt porphyrins. 

 

Introduction 

Water splitting is one of the most important processes for many applications associated with 

carbon-free energy storage and conversion.(1−3) Water oxidation (WO) or the oxygen 

evolution reaction (OER) is a more complex transformation than proton reduction, and for this 

reason it is still considered the most challenging step in water splitting.(4,5) In fact, the OER is 

crucial to produce oxygen from water successfully,(6,7) as well as for other applications such 

as regenerating fuel cells(8) and rechargeable metal–air batteries.(9) 

Precious-metal oxides IrO2 and RuO2 are, so far, the most efficient OER electrocatalysts, but 

their high cost, scarcity, and low durability make them impractical for large-scale 

applications.(10,11) Other OER catalysts (mostly metal oxides/hydroxides)(12) generally 
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show unsatisfactory catalytic activities with large overpotentials.(10,11,13−15) Cobalt-based 

water oxidation electrocatalysts (WOC), including molecular complexes(5,16,17) and 

inorganic nanoparticles,(18−22) are of great interest due to their notable OER activities and 

abundance of this metal in the earth.(3,23−25) MOFs are a novel class of porous materials 

that are emerging in the research of electrochemical water splitting due to their large surface 

areas, controllable arrangement of isolated active sites, and high design 

flexibility.(26,27) However, few works have reported on the construction of cobalt-based MOFs 

for the electrocatalytic OER,(28−41) despite their large structural features. These types of 

materials have typically suffered from low conductivity and low electrocatalytic activity; 

therefore, a large number of research efforts have been made to overcome these limitations. 

Strategies reported to facilitate the charge transport across the MOF include an increase in the 

charge delocalization by introducing donor–acceptor type interactions,(42−45) mixed valent 

states of the node/linker,(46,47) and π–π stacking or π-conjugation into the framework.(48) In 

addition, effective strategies to enhance the intrinsic electrocatalytic activity of MOFs have 

been focused on an increase in the accessibility of the active sites(36−38) and modulation of 

their electronic environment.(35,39−41,49) The optimization of coordinative unsaturated metal 

sites of MOFs has been achieved by tuning the synthetic protocol(38,49,50) and/or post-

treatment methods via MOF activation by solvent-assisted ligand exchange,(49) plasma 

engraving,(36,51) or electrochemical activation.(32,38−40) Furthermore, electronic structures 

of the building units of MOFs have been modulated by incorporating missing linker and missing 

node defects(37,49,52−54) or by the construction of hybrid MOF heterostructures containing 

two or more different kinds of metal ions or organic linkers.(34,35,39−41) Because of the 

intrinsically high kinetic barrier for the OER, most of the reported cobalt-based MOF 

electrocatalysts operate in strongly alkaline media, which implies very highly corrosive and 

harsh conditions for large-scale applications. Hence, a major challenge is the development of 

new MOFs for efficient electrocatalytic water oxidation at neutral pH. 

In addition, previous studies have shown that the electrocatalytically active species for the 

cobalt-mediated OER are the Co(IV)–oxo or Co(III)–oxyl radical species generated from the 

resting state of the cobalt centers by proton-coupled electron transfers. In this sense, different 

mechanisms have been proposed for the cobalt-mediated O–O bond formation, namely: (i) 

direct coupling between two oxo or oxyl ligands located in distinct cobalt centers, which 

produces a bridging peroxo intermediate,(55,56) (ii) geminal coupling of an oxo (or oxyl) ligand 

with another water-derived ligand coordinating the same cobalt center,(57,58) and (iii) water 

nucleophilic attack to the oxo or oxyl radical ligands, generating the corresponding 

hydroperoxide intermediate.(59−61) Unfortunately, despite previous efforts, the exact 

mechanism is still unresolved. 

Herein, a new cobalt MOF based on well-defined layered double cores (2D-Co-MOF) has been 

synthesized. These layered double cores are strongly connected by intermolecular bonds, 

holding its 3D structure together by π–π stacking interactions between the labile pyridine 

ligands of the nanosheets. Treatment of this π-stacked 2D-Co-MOF with water provokes the 

exchange of the axial labile pyridine ligands by water molecules that triggers the delamination 

of the material, producing double nanosheets (delaminated 2D-Co-MOF), which opens up the 

formation of active cobalt sites for their application in the OER. In addition, its dispersion in 

Nafion provides a composite (2D-Co-MOF@Nafion) with a good adherence to graphite 

electrodes suitable for the electrocatalytic water oxidation reaction. Moreover, electrochemical 

activation of the composite facilitates both ionic migration and electron transfer across the film, 

which in turn generates more open active cobalt sites for water oxidation. The fully 

activated 2D-Co-MOF@Nafion composite exhibits superior electrocatalytic performance for 

the OER at neutral pH in comparison to similar nanosheet-based materials reported in the 

literature. This enhanced electrocatalytic activity can be ascribed to the presence of nitrogen-
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containing aromatic equatorial ligands that promote the water nucleophilic attack as in the case 

of the highly efficient cobalt porphyrins and related systems commonly employed as catalysts 

for the homogeneous water oxidation reaction.(62,63) 

 

Results and Discussion 

 

Synthesis and Characterization of the π–π Stacked 2D-Co-MOF 

The new 2D-Co-MOF was obtained by solvothermal synthesis at 150 °C for 9 days. The 

cubane cobalt cluster [Co4O4(OAc)4(py)4](64) has been seen to be a key for the synthesis of 

the new 2D-Co-MOF material, since attempts to obtain this new material with other common 

reagents such as Co(NO3)2·6H2O and Co(OAc)2 were unsuccessful under a wide range of 

different synthetic conditions (Figure S1 and Table S1). The solvothermal reaction of 

[Co4O4(OAc)4(py)4] and 2,2′-bipyridine-4,4′-dicarboxylic acid (H2bda) in pyridine results in 

the formation of red crystals of 2D-Co-MOF. Single-crystal X-ray diffraction reveals that 2D-

Co-MOF crystallizes in the monoclinic P21/n space group (Figure S2 and Table S2). The 

Co2+ atom lies in a distorted-octahedral environment (Figure 1a and Figure S3) and is 

coordinated by three oxygen atoms from three different bda2– ligands, one of them in an axial 

position (sp2 oxygen of the carboxylic group) and the other two which take up two of the 

equatorial positions (alkoxy substituent of the carboxylic group). These carboxylate groups are 

chelating monodentate, and each oxygen of a carboxylic group is coordinated with a different 

cobalt center. Each Co2+ ion is also coordinated in a bidentate fashion to two nitrogen atoms 

of one bda2– ligand, different from the three which are coordinated to the cobalt by the 

carboxylic group, and to a nitrogen atom from a pyridine ligand, which occupies the second 

axial position to form six-coordinate metal ions (Figures S4 and S5). 

Figure 1 

 

Figure 1. X-ray structure of (a) the secondary building unit, (b) a layered double nanosheet, 
and (c) π–π stacked two-layered double nanosheets of 2D-Co-MOF. The blue arrow 
indicates the distance between the two single layers of a nanosheet (3.491 Å), and the red 
arrow indicates the intersheet distance between π–π stacked nanosheets (7.422 Å). 

 

This material extends in two directions of the space, forming a 3D layer material consisting of 

nanosheets comprised of two single layers with an interplanar distance of 3.491 Å (Figure 1b 

and Figure S6). Consecutive nanosheets are further packed into three-dimensional 

supramolecular structures through interlayer face to face π···π interactions between pyridine 

ligands (Figure 1c and Figure S7). The distance between the centroids of the pyridine rings is 
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4.238 Å. Two cobalt atoms of two different layers are connected by two carboxylate groups of 

two different bda2– ligands, the distance between these two cobalt ions being 4.69 Å. 

The chemical analysis of this new material was determined by elemental analysis (EA) and 

inductively coupled plasma atomic emission spectroscopy (ICP-AES). The obtained results (C, 

55.07; H, 3.05; N, 10.77; Co, 15.05) match well with the formula C18H11CoN3O4 determined 

by single-crystal X-ray diffraction (more information is given in the Supporting Information). 

The thermal stability was tested by thermogravimetric analysis (Figure S8), which is 

characterized by three mass loss steps. The first one at 120 °C is ascribed to the solvent 

enclosed in the material, whereas the other two overlapped steps at around 400 °C correspond 

to the loss of pyridine and bda ligands (more details are given in the Supporting Information). 

The microporosity of the material has been demonstrated upon activation at 100 °C under 

vacuum, with a moderate CO2 adsorption capacity of 1.1 mmol/g at 0 °C and 100 kPa (Figure 

S9a,b), which corresponds to an apparent surface area of 61 m2/g. 

In order to provide further composition characterization, 2D-Co-MOF was studied by FESEM 

(field emission scanning electron microscopy) and EDX (energy dispersive X-ray 

spectroscopy) analysis (Figure 2a). 2D-Co-MOF crystals have a hexagonal morphology, and 

all of its elements are well distributed, as can be observed in the EDX images. 

Figure 2 

 

 

Figure 2. (a) FESEM image of 2D-Co-MOF and its EDX analysis. XPS spectra of (b) Co 2p 
line, (c) O 1s line, and (d) N 1s line of 2D-Co-MOF. 

The electronic structure of this material was also analyzed by X-ray photoelectron 

spectroscopy (XPS) (Figure 2b–d) to elucidate the nature of the coordination environment. The 
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survey spectrum shows the presence of cobalt, oxygen, carbon, and nitrogen. The analysis of 

XPS spectra of 2p transition metals is not a straightforward process, as they contain multiplet 

splitting and shakeup structures that may prove difficult in the identification of the chemical 

states present.(65) The binding energy (Eb) value is typically used in XPS to determine the 

oxidation number of a chemical element, though for the 3d transition elements the spin–orbit 

splitting is more informative. According to theoretical calculations,(66) the Co 2p1/2–Co 

2p3/2 spin–orbit splitting increases when the number of the unpaired 3d electrons is increased, 

being closer to 16 eV for high-spin Co(II) and to 15 eV for Co(III). For the current 2D-Co-

MOF, Eb(Co 2p3/2), Eb(Co 2p1/2), and ΔE1 values are 780.7, 796.4, and 15.7 eV, 

respectively (Figure 2b). Intense satellite peaks (∑sat/ICo2p > 1.6) have been observed for the 

Co 2p3/2 spectra. Both ∑sat/ICo2p and ΔE1 values are characteristic of the high-spin 

cobalt(II) compounds,(67−70) indicating that the cobalt centers of 2D-Co-MOF are exclusively 

in the Co(II) oxidation state. In addition, the O 1s peak was deconvoluted into two components 

at 531.1 and 532.6 eV corresponding to O═C–O and C–O, respectively (Figure 2c). Finally, 

the N 1s peak presents only one contribution at 399 eV characteristic of pyridinic nitrogen 

(Figure 2d). 

Finally, the chemical stability of the new 2D-Co-MOF material in different solvents was 

investigated from the powder diffraction patterns measured after contacting this material with 

protic solvents such as ethanol and water, nonprotic solvents such as acetonitrile, and strongly 

alkaline solvent such as triethylamine (pH 12.7) (Figures S10 and S11). The X-ray powder 

diffraction spectra reveal that this material maintains its structure intact after being treated with 

ethanol, acetonitrile, and triethylamine at 25 °C over 1 day. However, treatment with water 

produces significant structural changes, as described in the next section. 

Reversible Chemical Delamination of the π–π Stacked 2D-Co-MOF 

In order to assess the chemical stability of the so-developed cobalt MOF in water for its 

application to promote the oxygen evolution reaction, further experiments have been carried 

out to probe their structural implications. In particular, Raman, PXRD, and XPS spectra of the 

π-stacked 2D-Co-MOF have been measured before and after its treatment with water for 5 

min. As can be seen in the Raman spectra depicted in Figure 3, the most striking findings in 

the presence of water (red spectrum) is the loss of the Raman bands associated with the axially 

coordinated pyridine ligands (768, 1010, and 1283 cm–1), and the insensitivity of the bands 

associated with the bipyridine (774, 1022, and 1278 cm–1) and the carboxylic groups (1289, 

1426, 1546, and 1615 cm–1), indicating that the cobalt centers preserve their coordination to 

the bda and carboxylic ligands after treatment with water. Interestingly, the XPS spectrum of 

the 2D-Co-MOF after treatment with water reveals the presence of a shoulder at 532.8 eV in 

the main O 1s peak, which is ascribed to cobalt-coordinated water molecules,(71) thereby 

suggesting that the axial labile pyridine ligand is replaced by water molecules (Figure S12). 

Additionally, the overall change of the PXRD pattern, with the loss or broadening of some 

characteristic bands (red spectrum in Figure 3), is consistent with a delamination of the π-

stacked 3D structure of the MOF to produce individual nanosheets, whose double-layer 

structure is preserved. 
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Figure 3 

 

Figure 3. Powder X-ray diffraction patterns (left panel) and Raman spectra (right panel) of the 

π-stacked 2D-Co-MOF before (black) and after successive treatment with H2O for 5 min 

(red) and with pyridine for 2 days at 150 °C (green). 

 

Interestingly, we have found that the 3D structure of the delaminated 2D-Co-MOF can be 

regenerated by a solvothermal process with pyridine at 150 °C for 2 days (green spectra 

in Figure 3). This fact has been corroborated using XPS, where the shoulder at 532.8 eV in 

the main O 1s peak, which is ascribed to cobalt-coordinated water molecules, disappears after 

the solvothermal treatment with pyridine (Figure S14), indicating the coordination of the 

pyridines in the axial position again and the regeneration of the π-stacked 3D structure. Finally, 

the characterization of the regenerated π-stacked 2D-Co-MOF has been completed with 

elemental analysis and ICP, which confirm the same bulk composition of the regenerated 

material (Table S3). 

To the best of our knowledge, this is the first time that MOFs have shown a “memory effect” in 

the delamination–pillarization process, which is well-known for the most famous 2D materials 

such as hydrotalcites.(72) 

On the other hand, to assess the suitability of the so-developed 2D-Co-MOF as an 

electrocatalyst, we produced a composite by its dispersion in an alcoholic Nafion solution (2D-

Co-MOF@Nafion), which is a commonly used polymer in OER electrocatalysis.(73) The 

influence of Nafion on the chemical stability of the π-stacked 3D structure of the MOF in water 

was also investigated by means of powder X-ray diffraction. From a comparison of the PXRD 

spectra of the 2D-Co-MOF measured before and after its treatment with water for different 

contact times (Figure S13), it was found that the π-stacked 2D-Co-MOF adopts a preferential 

[100] orientation in the composite, where the crystals of the MOF interact in a planar way with 

the Nafion. In addition, in the presence of an aqueous solution, the 3D structure of the MOF 

only lasted about 40 min before suffering the delamination process. Thus, Nafion slows down 

the pyridine–water exchange but does not preclude it. 

In addition, we have found that the current 2D-Co-MOF@Nafion composite shows good 

adherence to graphite electrodes and long chemical stability for its application in promoting the 

electrocatalytic water oxidation reaction (vide infra). 
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Interplay between Redox Electrochemistry and Coordinative Chemistry of 

the 2D-Co-MOF@Nafion Composite 

We first investigated the electrochemical redox conversion of the 2D-Co-MOF@Nafion 

composite in the absence of water by measuring the voltammetric response of a pyrolytic 

graphite electrode coated with the MOF composite in an acetonitrile solution containing 0.1 M 

[Et4N]PF6. As shown in Figure 4a, its electrochemical response is characterized by two pairs 

of voltammetric waves located at 0.65 V (wave I) and 1.38 V (wave II) vs NHE, which 

correspond to the Co(II)/Co(III) and Co(III)/Co(IV) redox conversions, respectively.(38) 

Figure 4 

 

Figure 4. (a) Cyclic voltammogram of a pyrolytic graphite electrode modified with Nafion 

(gray dashed line) or with 2D-Co-MOF@Nafion (black line) recorded at 0.05 V s–1 in 

acetonitrile. (b) Cyclic voltammograms recorded at 0.05 V s–1 in aqueous 0.1 M SPB 

solution pH 7 at 25 °C before (blue line) and after (red line) electrochemical activation of 2D-

Co-MOF@Nafion deposited on a pyrolytic graphite electrode and (c) corresponding Nyquist 

plots measured at 1.1 V vs NHE, before (blue symbols) and after (red symbols) 

electrochemical activation. Solid lines are the best fits using the equivalent circuit of the inset 

plot with the parameter values reported in Table S5. (d) Cyclic voltammograms of a pyrolytic 

graphite electrode modified with 2D-Co-MOF@Nafion recorded at 0.05 V s–1 and 25 °C in 

an aqueous 0.1M SPB solution at the indicated pHs and (e) the corresponding E vs pH plot 

estimated at 8 μA (red symbols) and 40 μA (green symbols). 

Electrochemical Activation in Aqueous Solutions 

In an aqueous 0.1 M sodium phosphate buffer solution (SPB) at pH 7, observation of a 

significant cobalt redox conversion requires electrochemical activation of the so-modified 

electrode by applying a positive enough potential of 1.2 V (vs NHE) for at least 30 min, as 

evidenced by comparing the voltammograms measured before (blue line) and after (red line) 

electrochemical activation (Figure 4b). As described above, the presence of the Nafion in 

the 2D-Co-MOF@Nafion composite slows down the pyridine–water exchange but does not 

preclude it. According to this finding, the cobalt centers of the delaminated 2D-Co-

MOF@Nafion-modified electrode equilibrated in the aqueous buffer solution are coordinated 
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axially to water molecules. Thus, the initial electroinactivity can be tentatively ascribed to a 

limitation of the ionic migration across the film that is required to compensate for the interfacial 

charge developed during the redox conversion of the cobalt centers. This limitation may 

originate from the compactness of the hydrophobic domains of Nafion. To probe this possibility, 

we have measured the voltammetric features of distinct 2D-Co-MOF@Nafion composites 

differing in the Nafion content (Figure S21), observing that an increase of the Nafion content 

attenuates the incipient voltammetric features associated with the redox conversion of the 

cobalt centers and the OER. This finding corroborates the initial blocking properties of the 

Nafion film and suggests that the enhancement of the electrocatalytic current during the 

electrochemical activation of the composite might result from a decompaction of the film. On 

the other hand, for the electrochemically activated electrode, only the first cobalt voltammetric 

wave (at ca. 1.04 V vs NHE) is well resolved due to concomitant contribution of the 

exponentially increasing electrocatalytic current associated with the oxygen evolution reaction. 

Bearing in mind that the electrocatalytically active species are the Co(IV)–oxo or Co(III)–oxyl 

radicals,(56,63,74) the proximity of the OER current to the cobalt voltammetric wave indicates 

that the formation of the above species is favored in aqueous solution with respect to the 

formation of Co(IV) in acetonitrile. To get more information on the cobalt-mediated 

electrocatalytic oxidation of water, we measured the voltammetric response of the 2D-Co-

MOF@Nafion composite for different acetonitrile/water ratios by adding variable volumes of 

an aqueous sodium phosphate buffer at pH 7 to the initial acetonitrile solution in the 

electrochemical cell (Figure S22). The increase in the exponential-like voltammetric feature 

located at E > 1.3 V (vs NHE) with the water content clearly indicates that it corresponds to the 

electrocatalytic oxidation of water. On the other hand, the small hysteresis between the forward 

and backward currents reveals that the electrocatalytic process is partially limited by water 

diffusion, since otherwise either a sigmoidal (absence of mass transport control) or peaked 

(full mass transport control) voltammetric feature is expected.(75,76) 

Furthermore, analysis of the scan rate dependence of anodic wave I (Figure S23) reveals that 

the Co(II)/Co(III) redox conversion is fast for low scan rates (≲0.5 V s–1, surface-confined 

behavior) and becomes limited by the charge transport across the film for higher scan rates 

(diffusion-like behavior). 

To get more insights into the effect of the electrochemical activation, electrochemical 

impedance spectra (EIS) of the immobilized 2D-Co-MOF@Nafion composite were measured 

at 1.1 V (vs NHE) before and after its electrochemical activation (Nyquist plots in Figure 4c). 

Before the electrochemical activation (blue symbols), the EI spectrum shows the typical shape 

expected for a diffusion-controlled redox process with a limiting linear segment of slope ∼1 in 

the low-frequency region (high Z′ values). This spectrum was quantitatively reproduced (solid 

line) with the equivalent circuit depicted in the inset of Figure 4c (or in Figure S25), 

where Rsf stands for the solution and film resistance, CPE for the constant phase element, 

and W∞ for the semi-infinite diffusion Warburg element (optimum fitting parameter values are 

reported in Table S5 and Figures S24 and S25 and the corresponding Bode plots in Figure 

S24). After electrochemical activation, the x intercept of the spectrum (equal to Rsf) shifted 

toward a lower Z′ value, which reveals an increase in the ionic migration rate across the MOF, 

and the low-frequency region showed an upward curvature, which is typical of a finite diffusion-

controlled electron transfer across the film.(77−81) This spectrum was quantitatively 

reproduced by the equivalent circuit depicted in the inset of Figure 4c (or in Figure S25), 

provided that the semi-infinite diffusion W∞ element was replaced by the finite-diffusion 

element with a totally reflecting boundary Wo (optimum fitting parameter values are reported 

in Table S5). The change from semi-infinite to finite diffusion is consistent with an increase in 

the electron transfer rate across the film. Overall, these results reveal that electrochemical 

activation facilitates both ionic migration and electron transfer across the Co-MOF composite. 
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To explore whether the electrochemical activation leads to structural and/or coordinative 

changes, we have measured the Raman, PXRD, and XPS spectra, as well as the FESEM and 

FIB images and EDX analysis of the composite before and after its electrochemical activation 

at 1.2 V (vs NHE) for different exposition times, where an extensive OER takes place. The 

insensitivity of the Raman and PXRD spectra (Figures S16 and S17) to the electrolysis time 

reveals that the cobalt centers maintain their coordination sphere and the individual 

nanosheets preserve their double-layer structure during their electrochemical activation. XPS 

spectra (Figure S18 and Table S4) corroborate these findings and also reveal that 

electrochemical activation does not affect the oxidation state of the cobalt centers in their 

resting state Co(II), where the presence of CoOx has not been detected. On the other hand, 

FESEM and FIB images (Figures S19 and S20) and the EDX analysis (Figure S19) clearly 

show that cobalt centers are homogeneously distributed in the composite, thus ruling out metal 

aggregation. These results reveal that delaminated double nanosheets retain their crystallinity 

and morphology during extensive OER. 

Altogether, these findings suggest that the enhancement in the electrocatalytic activity during 

the electrochemical activation of the composite might originate from an increase in the ionic 

permeability of the film, as evidenced by a decrease in its electrical resistance determined by 

electrochemical impedance spectroscopy, rather than from induced structural changes. Along 

this line, we speculate that the generation of oxygen microbubbles during electrochemical 

water oxidation might contribute to the formation of microchannels in the film that facilitate the 

accessibility of the electrolyte to the cobalt centers. 

Mechanistic Insights 

The exchange of pyridine ligands by water molecules is expected to facilitate charge 

compensation in the electrochemical oxidation of the cobalt centers by ionization of the 

corresponding water-derived ligands. To probe this issue and provide a more complete redox 

speciation of the immobilized 2D-Co-MOF, we have studied the effect of the solution pH on its 

voltammetric response by using sodium phosphate buffer (Figure 4d). It should be noted that 

the 2D-Co-MOF@Nafion-modified electrode was equilibrated in the aqueous buffer solution, 

so that the starting cobalt species was Co2+(OH2). With an electrochemically activated 2D-

Co-MOF@Nafion in a 0.1 M SPB solution of pH 10 as the starting material, a decrease in the 

solution pH resulted in the shift of the cobalt voltammetric wave toward more positive potentials 

with a slope of ca. −60 mV/pH up to pH 6.5 (Figure 4e). This linear dependence is typical of a 

redox conversion involving a proton-coupled electron transfer with the same number of 

exchanged protons and electrons. Bearing in mind that the pKa value of the water molecule 

coordinated to Co(III) in molecular complexes is within the range 5–7(65,82,83) and that of 

water coordinated to Co(II) in polyoxometalates is greater than 10,(61,84) the above pH 

dependence is consistent with a deprotonation of the coordinating water molecule upon 

oxidation of the Co(II) centers according to  

Below pH 6.0, a progressive, irreversible loss of the cobalt voltammetric wave occurs until it 

disappears at pH < 5. The concomitant decrease of OER current corroborates the catalytic 

role of the cobalt centers. Bearing in mind that the pKa values of the two carboxylic acid 

substituents of the bda ligand are 1.5 and 3.0(85) and the pKa values of the two pyridyl 

nitrogens of 2,2′-bipyridine are 1.8 and 4.5,(86,87) the irreversible loss of the electrochemical 

activity can be ascribed to the MOF breakdown induced by protonation of the bda acid/base 

groups. 

The voltammetric branch associated with the electrocatalytic oxidation of water shifts with the 

solution pH in a way similar to that for the cobalt voltammetric features (green symbols 
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in Figure 4e), indicating that the cobalt-mediated electrocatalysis of the OER proceeds through 

a series of proton-coupled electron transfers with the same number of exchanged electrons 

and protons. 

On the basis of the above electrochemical and spectroscopic results, the mechanism shown 

in Figure 5 for the redox conversion and electrocatalytic water oxidation involving the 2D-Co-

MOF@Nafion composite in aqueous solution is proposed. First, electrochemical oxidation of 

the cobalt centers (Co2+–OH2, 1) at ∼1.04 V vs NHE is accompanied by ionization of the 

water ligand to produce Co3+–OH (2) via a proton-coupled electron transfer (PCET). Then, a 

second PCET at a somewhat more positive potential is expected to produce the oxo 

intermediate Co4+═O (3), which has a significant Co3+oxyl radical character (Co3+–O•, 4), 

which has been recognized to be the catalytically active species for the OER. From the different 

mechanisms proposed for the cobalt-mediated O–O bond formation,(55−61) direct coupling 

between two Co4+═O (or Co3+–O•) moieties of the same nanosheet is discarded because of 

the large Co···Co distance (4.69 Å). The lack of a second water-derived ligand in the cobalt 

centers rules out the geminal coupling. On the other hand, the increase in the film ionic 

permeation during the electrochemical activation of the composite indicates that the OER 

electrocatalysis requires a good accessibility of the electrolyte to the cobalt centers that is 

fulfilled if delaminated nanosheets are well separated from each other. However, this scenario 

does not favor the intersheet radical coupling mechanism, as it requires quite small intersheet 

distances for the formation of the corresponding dinuclear moiety. This situation is in contrast 

to that found in cobalt oxide, where the radical coupling mechanism is a realistic scenario, as 

it involves two surface oxo bridged cobalt centers with good accessibility for the electrolyte. 

Since for the current system the above two requirements (proximity and electrolyte 

accessibility) cannot be simultaneously fulfilled, the more plausible scenario for the OER 

mechanism is the mononuclear water nucleophilic attack to Co4+═O or Co3+–O• to produce 

the hydroperoxide intermediate Co3+–O–OH (5) via a PCET, which may be facilitated by the 

bipyridine equatorial ligands as in the case of the highly efficient cobalt porphyrins.(62) Finally, 

intermediate 5 reacts with water to form the oxygen molecule and regenerate the resting state 

of cobalt Co2+–OH2 through another PCET. 
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Figure 5. Proposed mechanism for the electrocatalytic oxygen evolution reaction mediated 

by 2D-Co-MOF at neutral pH. 

Benchmarking the Electrocatalytic Performance of the 2D-Co-

MOF@Nafion Composite for the Water Oxidation Reaction 

In order to assess the electrocatalytic activity of 2D-Co-MOF@Nafion composite toward the 

OER in neutral solution, steady-state polarization curves were measured by means of rotating 

disk voltammetry. Figure 6a depicts the polarization curves recorded in neutral media with 2D-

Co-MOF and the typical OER electrocatalysts RuO2, IrO2, and Co3O4, all of them 

codeposited with Nafion onto a graphite electrode. The electrocatalytic onset potentials were 

1.73, 1.65, 1.77, and 1.84 V vs RHE for 2D-Co-MOF, RuO2, IrO2, and Co3O4, respectively. 

The corresponding overpotential values at 2 mA cm–2 were 548, 404, 680, and 595 mV for 2D-

Co-MOF, RuO2, IrO2, and Co3O4, respectively. Note that the overpotential value of 2D-Co-

MOF is similar to the values reported for the most active cobalt-MOF based catalysts at pH 7 

(Table S6). 
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Figure 6. (a) Rotating disk voltammograms recorded at 5 mV s–1 and 1500 rpm and (b) 

steady-state Tafel plots of a pyrolytic graphite electrode modified with the indicated 

electrocatalyst in a 0.1 M SPB solution pH 7 at 25 °C. (c) Consecutive chronoamperograms 

at 1.8 V vs RHE for a 2D-Co-MOF@Nafion-modified graphite electrode in an aqueous 0.1 M 

SPB solution with pH 7 at 25 °C. Inset plot: rotating disk voltammograms measured at 5 mV 

s–1 before (red line) and after (green line) the chronoamperometric experiment. (d) 

Chronoamperograms at 1.8 V vs RHE for a 2D-Co-MOF@Nafion-modified graphite electrode 

in an aqueous 0.1 M SPB solution with pH 7 at 25 °C for several on/off reaction cycles. Inset 

plot: rotating disk voltammograms measured at 5 mV s–1 after catalytic run at day 1 (red 

line), day 3 (green line), and day 7 (purple line). 

The kinetics of the electrocatalytic OER mediated by the different electrocatalysts was 

assessed from the corresponding Tafel plot (Figure 6b) obtained from the chronoamperometric 

steady-state current density data measured for a sequence of 0.01 V potential steps. 2D-Co-

MOF exhibits a Tafel slope (TS) value of 88 ± 4 mV dec–1, which is similar to those obtained 

with RuO2 and Co3O4 and lower than that of IrO2. To the best of our knowledge, this is the 

best value among known cobalt MOF catalysts operating in neutral media. The turnover 

frequency (TOF) value was determined from the expression TOF = i/4Q (where i is the current 

intensity at a given overpotential and Q is the Faradaic charge under the baseline-corrected 

voltammetric peak preceding the electrocatalytic branch). A value of 0.034 s–1 was obtained 

for the TOF of 2D-Co-MOF at an overpotential of 400 mV with Q = 2.5 × 10–5 C (which 

corresponds to 2.6 × 10–10 mol of electroactive cobalt). It should be remarked that this TOF 

value is superior to those reported for similar electrocatalysts(27) (Table S6). The effect of the 

amount of electroactive 2D-Co-MOF on the OER electrocatalysis has been also evaluated 

(Figure S26). An increase in the electroactive cobalt population, obtained by increasing the 

electrochemical activation time, results in an increase in the electrocatalytic current density at 

a given potential and a decrease in the corresponding overpotential at a given current density. 

However, the TOF value determined at an overpotential of 400 mV decreases upon increasing 

the electroactive population, until it levels off at ∼ 0.035 s–1 for an electroactive population of 
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2.0 × 10–10 mol. This dependence reveals that not all cobalt centers catalyze the water 

oxidation reaction at the same level. 

The improved activity for the water oxidation reaction of the 2D-Co-MOF@Nafion composite 

electrocatalyst can be ascribed to both a more efficient charge transport across the catalyst 

film and a facilitated water nucleophilic attack to the active centers presumably by the presence 

of nitrogen-containing aromatic equatorial ligands. 

The operational stability and long-term durability of the electrocatalyst during the OER have 

also been explored. First, the chronoamperometric current for the 2D-Co-MOF@Nafion-

modified graphite electrode was measured at 1.8 V (vs RHE) for three consecutive water 

electrolysis cycles that lasted 9 h (Figure 6c). The chronoamperograms are characterized by 

an initial decrease in the current that can be ascribed to the formation of oxygen bubbles at 

the electrode surface, thereby affecting the water transport inside the multilayered film (Figure 

S27). Then, the current approaches a steady state value of ∼2 mA cm–2 in each 

chronoamperogram, with a negligible decrease in the current density at the end of the 9 h of 

operation. The similarity of the polarization curves of fully activated 2D-Co-MOF@Nafion 

measured before and after the water electrolysis experiment, depicted in the inset plot 

of Figure 6c, reflects the high stability of this material. Moreover, a Faradaic efficiency value of 

77% of 2D-Co-MOF for the OER reaction was determined after extensive water electrolysis, 

reflecting that the current density mostly originates from water oxidation. Additionally, the 

analysis of the electrolytic solution after extensive water electrolysis by UPLC-HRMS (Q-ToF) 

reveals the presence of small amounts of pyridine and Nafion (Figure S15), which is consistent 

with the aforementioned pyridine–water ligand exchange and with a certain composite peeling 

off during water electrolysis. It should be noted that the solution pH remains unchanged during 

water electrolysis. 

The recyclability of the catalyst has also been examined along several successive catalytic 

runs with on/off cycles that lasted 7 days, checking its resistance to activity loss. As can be 

seen in Figure 6d, the current density decreases by 50% after five recycles over 7 days. 

However, the rotating disk voltammograms recorded after each catalytic run reveal that the 2D-

Co-MOF@Nafion composite retains a remarkable electrocatalytic performance without 

significant activity loss (inset plot in Figure 6d). 

Overall, the long-term stability of delaminated 2D-Co-MOF in the composite is consistent with 

the absence of significant structural changes in the composite during extensive OER, as 

described in the previous section. 

 

Conclusions  

In summary, the synthesis of a new cobalt MOF based on a two-layered core that is strongly 

connected by intermolecular bonds has been developed. The use of a well-defined cobalt 

cluster as the starting compound for the synthesis directs the construction of a Co-MOF with 

an unusual topology. In this MOF, the layered double nanosheets are held together by π–π 

stacking interactions between labile pyridine ligands. It has been shown that this material 

delaminates in the presence of water and that the original 3D layered structure can be 

regenerated by solvothermal treatment with pyridine, so that the individual nanosheets have 

associated memory. 

Dispersion of the so-synthesized MOF in an alcoholic Nafion solution gives rise to a composite 

(2D-Co-MOF@Nafion) with good adherence to graphite electrodes and long-term chemical 

stability. Electrochemical activation of the 2D-Co-MOF@Nafion-modified electrode improves 

https://pubs.acs.org/doi/10.1021/jacs.0c08882#fig6
https://pubs.acs.org/doi/10.1021/jacs.0c08882#fig6
https://pubs.acs.org/doi/suppl/10.1021/jacs.0c08882/suppl_file/ja0c08882_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.0c08882/suppl_file/ja0c08882_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.0c08882#fig6
https://pubs.acs.org/doi/10.1021/jacs.0c08882#fig6
https://pubs.acs.org/doi/suppl/10.1021/jacs.0c08882/suppl_file/ja0c08882_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.0c08882#fig6
https://pubs.acs.org/doi/10.1021/jacs.0c08882#fig6
https://pubs.acs.org/doi/10.1021/jacs.0c08882#fig6
https://pubs.acs.org/doi/10.1021/jacs.0c08882#fig6


both ionic migration and electron transfer across the film and promotes the formation of 

electrocatalytically active cobalt centers. The activated composite exhibits enhanced 

electrocatalytic activity for water oxidation in neutral media, with a TOF value and robustness 

superior to those reported for similar electrocatalysts operating under the same experimental 

conditions. On the basis of the particular topology of the new Co-MOF, with quite distant cobalt 

centers, and its spectroscopic and electrochemical characterization, a reaction pathway 

mechanism relying on mononuclear centers is proposed for the cobalt-mediated 

electrocatalytic OER. Its high electrocatalytic efficiency at neutral pH is tentatively attributed to 

the presence of nitrogen-containing aromatic equatorial ligands that presumably facilitate the 

water nucleophilic attack as in the case of cobalt porphyrins. 
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