35 research outputs found

    Integrated life cycle assessment and thermodynamic simulation of a public building's envelope renovation : Conventional vs. Passivhaus proposal

    Get PDF
    Unidad de excelencia María de Maeztu MdM-2015-0552The need to improve the energy efficiency of buildings has introduced the concept of nearly zero-energy buildings into European energy policies. Moreover, a percentage of the building stock will have to be renovated annually to attain high energy performance. Conventional passive interventions in buildings are focused on increasing the insulation of the building envelope to increase its energy efficiency during the operating phase. Often, however, intervention practices imply the incorporation of embodied energy into the building materials and increase the associated environmental impacts.This paper presents and evaluates a comparison of two different proposals for a real-world building renovation. The first proposal was a conventional project for energy renovation, while the second was a low-energy building proposal (following the Passivhaus standard). This study analysed the proposals using an integrated life cycle and thermal dynamic simulation assessment to identify the adequacy of each renovation alternative regarding the post-renovation energy performance of the building, including an evaluation of the introduction of a renewable insulation material into the low-energy building proposal, specifically a specific cork solution. The most significant conclusion was the convenience of the renovation, achieving energy savings of 60% and 80% for the conventional and Passivhaus renovations (ENERPHIT), respectively. The former supposed less embodied energy and environmental impacts but also generated less energy savings. The latter increased the embodied impacts in the building, mainly for the large amount of insulation material. The environmental implications of both proposals can be compensated for within a reasonable period of time, over 2 years in the majority of alternatives and impact categories. However, the ENERPHIT project was 30% better than the conventional proposal when the total lifespan of the building was considered. The introduction of cork did not fit the requirements for competing with the common non-renewable insulation materials because it did not imply better environmental performance in buildings, but cork insulation solutions currently present ample room for improvement

    Functional DNA methylation signatures for autism spectrum disorder genomic risk loci: 16p11.2 deletions and CHD8 variants

    Get PDF
    Background: Autism spectrum disorder (ASD) is a common and etiologically heterogeneous neurodevelopmental disorder. Although many genetic causes have been identified (\u3e 200 ASD-risk genes), no single gene variant accounts for \u3e 1% of all ASD cases. A role for epigenetic mechanisms in ASD etiology is supported by the fact that many ASD-risk genes function as epigenetic regulators and evidence that epigenetic dysregulation can interrupt normal brain development. Gene-specific DNAm profiles have been shown to assist in the interpretation of variants of unknown significance. Therefore, we investigated the epigenome in patients with ASD or two of the most common genomic variants conferring increased risk for ASD. Genome-wide DNA methylation (DNAm) was assessed using the Illumina Infinium HumanMethylation450 and MethylationEPIC arrays in blood from individuals with ASD of heterogeneous, undefined etiology (n = 52), and individuals with 16p11.2 deletions (16p11.2del, n = 9) or pathogenic variants in the chromatin modifier CHD8 (CHD8 +/-, n = 7). Results: DNAm patterns did not clearly distinguish heterogeneous ASD cases from controls. However, the homogeneous genetically-defined 16p11.2del and CHD8 +/- subgroups each exhibited unique DNAm signatures that distinguished 16p11.2del or CHD8 +/- individuals from each other and from heterogeneous ASD and control groups with high sensitivity and specificity. These signatures also classified additional 16p11.2del (n = 9) and CHD8 (n = 13) variants as pathogenic or benign. Our findings that DNAm alterations in each signature target unique genes in relevant biological pathways including neural development support their functional relevance. Furthermore, genes identified in our CHD8 +/- DNAm signature in blood overlapped differentially expressed genes in CHD8 +/- human-induced pluripotent cell-derived neurons and cerebral organoids from independent studies. Conclusions: DNAm signatures can provide clinical utility complementary to next-generation sequencing in the interpretation of variants of unknown significance. Our study constitutes a novel approach for ASD risk-associated molecular classification that elucidates the vital cross-talk between genetics and epigenetics in the etiology of ASD

    Mutations in the latent TGF-beta binding protein 3 (LTBP3) gene cause brachyolmia with amelogenesis imperfecta

    Get PDF
    Inherited dental malformations constitute a clinically and genetically heterogeneous group of disorders. Here, we report on four families, three of them consanguineous, with an identical phenotype, characterized by significant short stature with brachyolmia and hypoplastic amelogenesis imperfecta (AI) with almost absent enamel. This phenotype was first described in 1996 by Verloes et al. as an autosomal recessive form of brachyolmia associated with AI. Whole-exome sequencing resulted in the identification of recessive hypomorphic mutations including deletion, nonsense and splice mutations, in the LTBP3 gene, which is involved in the TGF-beta signaling pathway. We further investigated gene expression during mouse development and tooth formation. Differentiated ameloblasts synthesizing enamel matrix proteins and odontoblasts expressed the gene. Study of an available knockout mouse model showed that the mutant mice displayed very thin to absent enamel in both incisors and molars, hereby recapitulating the AI phenotype in the human disorder

    DNA Methylation Signature for EZH2 Functionally Classifies Sequence Variants in Three PRC2 Complex Genes.

    Get PDF
    Weaver syndrome (WS), an overgrowth/intellectual disability syndrome (OGID), is caused by pathogenic variants in the histone methyltransferase EZH2, which encodes a core component of the Polycomb repressive complex-2 (PRC2). Using genome-wide DNA methylation (DNAm) data for 187 individuals with OGID and 969 control subjects, we show that pathogenic variants in EZH2 generate a highly specific and sensitive DNAm signature reflecting the phenotype of WS. This signature can be used to distinguish loss-of-function from gain-of-function missense variants and to detect somatic mosaicism. We also show that the signature can accurately classify sequence variants in EED and SUZ12, which encode two other core components of PRC2, and predict the presence of pathogenic variants in undiagnosed individuals with OGID. The discovery of a functionally relevant signature with utility for diagnostic classification of sequence variants in EZH2, EED, and SUZ12 supports the emerging paradigm shift for implementation of DNAm signatures into diagnostics and translational research

    hMSH2 is the most commonly mutated MMR gene in a cohort of Greek HNPCC patients

    Get PDF
    Germline mutations in genes encoding proteins involved in DNA mismatch repair are responsible for the autosomal dominantly inherited cancer predisposition syndrome hereditary nonpolyposis colorectal cancer (HNPCC). We describe here analysis of hMLH1 and hMSH2 in nine Greek families referred to our centre for HNPCC. A unique disease-causing mutation has been identified in seven out of nine (78%) families. The types of mutations identified are nonsense (five out of seven) (hMLH1: E557X, R226X; hMSH2: Q158X, R359X and R711X), a 2 bp deletion (hMSH2 1704_1705delAG) and a 2.2 kb Alu-mediated deletion encompassing exon 3 of the hMSH2 gene. The majority of mutations identified in this cohort are found in hMSH2 (77.7%). Furthermore, four of the mutations identified are novel. Finally, a number of novel benign variations were observed in both genes. This is the first report of HNPCC analysis in the Greek population, further underscoring the differences observed in the various geographic populations

    The phenotype of Floating-Harbor syndrome: Clinical characterization of 52 individuals with mutations in exon 34 of SRCAP

    Get PDF
    Background: Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA based confirmatory test, we set forth to define the clinical features of this syndrome. Methods and results. Clinical information on fifty-two individuals with SRCAP mutations was collected using standardized questionnaires. Twenty-four males and twenty-eight females were studied with ages ranging from

    Autoantibodies against type I IFNs in humans with alternative NF-ÎşB pathway deficiency

    Get PDF
    corecore