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NSD1 mutations generate a genome-wide DNA
methylation signature
S. Choufani1, C. Cytrynbaum1,2,3, B.H.Y. Chung4, A.L. Turinsky1,5, D. Grafodatskaya1, Y.A. Chen1,6, A.S.A. Cohen7,

L. Dupuis2,3, D.T. Butcher1, M.T. Siu1, H.M. Luk8, I.F.M. Lo8, S.T.S. Lam8, O. Caluseriu9, D.J. Stavropoulos10,11,

W. Reardon12, R. Mendoza-Londono1,2,13, M. Brudno1,5,14, W.T. Gibson7, D. Chitayat2,3,13,15 & R. Weksberg1,2,3,6,13

Sotos syndrome (SS) represents an important human model system for the study of

epigenetic regulation; it is an overgrowth/intellectual disability syndrome caused by

mutations in a histone methyltransferase, NSD1. As layered epigenetic modifications are often

interdependent, we propose that pathogenic NSD1 mutations have a genome-wide impact on

the most stable epigenetic mark, DNA methylation (DNAm). By interrogating DNAm in SS

patients, we identify a genome-wide, highly significant NSD1þ /� -specific signature that

differentiates pathogenic NSD1 mutations from controls, benign NSD1 variants and the

clinically overlapping Weaver syndrome. Validation studies of independent cohorts of SS

and controls assigned 100% of these samples correctly. This highly specific and sensitive

NSD1þ /� signature encompasses genes that function in cellular morphogenesis and

neuronal differentiation, reflecting cardinal features of the SS phenotype. The identification of

SS-specific genome-wide DNAm alterations will facilitate both the elucidation of the

molecular pathophysiology of SS and the development of improved diagnostic testing.
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R
ecent advances in next-generation sequencing technologies
have led to the discovery of the molecular basis of many
overgrowth syndromes. Constitutional mutations in two

different genes involved in regulating histone modifications,
NSD1 and EZH2, have been shown to cause clinically overlapping
overgrowth disorders, Sotos syndrome (SS) and Weaver
syndrome, respectively.

Sotos syndrome (OMIM 117550) is an autosomal dominant
condition with an estimated prevalence of 1:14,000 live births
(Rahman, unpublished data). It is characterized by pre- and
postnatal overgrowth, advanced bone age, distinctive facial gestalt
and a variety of neurodevelopmental problems including
intellectual disability1. Mutations in NSD1 (nuclear receptor
SET (su(var)3–9, enhancer-of-zeste, trithorax) domain containing
protein-1) are found in 80–90% of patients with SS2–4.
As mutations in other genes have not been reported in SS
patients, the remaining 10–20% likely harbour undetected NSD1
mutations or represent clinical misclassification.

NSD1 is one of many genes that have been recently recognized
to developmentally regulate the epigenome. NSD1 encodes a
histone H3 lysine 36 methyltransferase, important for multiple
aspects of normal embryonic development5. NSD1 binds near
various promoter elements to regulate transcription via
interactions with H3K36 methylation and RNA polymerase II
(ref. 6). In general, it has been proposed that during development,
histone modifications are fairly transient regulatory marks that
are replaced in the longer term by the more stable epigenetic
mark DNAm7. As a proof of principle of the interaction between
loss of function in a histone modifier and DNAm status, we have
previously demonstrated that mutations in a lysine-specific
demethylase, KDM5C, generates specific genome-wide DNAm
alterations8. Here we analyse the DNA methylome in SS patients
and define a specific genome-wide pattern of DNAm alterations
associated with NSD1 loss-of-function mutations. We
demonstrate how this profile may be used to derive a molecular
NSD1þ /� -specific signature with high sensitivity and specificity
and validate this signature in independent cohorts of SS and
controls. We show that the signature is able to distinguish
pathogenic NSD1 mutations not only from control subjects, but
also from benign sequence variants within NSD1 and from cases
with the clinically overlapping Weaver syndrome caused by
mutations in the histone methyltransferase EZH2 (Enhancer of
Zeste, Drosophila, Homolog 2). Finally, we determine the
functional significance of the observed genome-wide DNAm
signature and demonstrate its potential utility in the diagnostic
testing of NSD1 mutations of unknown significance.

Results
Identification of NSD1þ /� -specific DNAm signature. To
determine whether NSD1 loss-of-function mutations impact
stable epigenetic marks such as DNAm at downstream genomic
targets, we compared DNAm in peripheral blood from SS
patients with known pathogenic NSD1 mutations (NSD1þ /� ;
n¼ 19) to controls (n¼ 53) (Supplementary Data 1 and 2). The
demographics for the discovery cohort were as follows: For SS,
there were 11 males and eight females and the mean age±s.d.
at sample collection was 10.1±9.6 years (range 0.6–40 years).
The 53 control subjects included 24 males and 29 females;
their mean age at the time of sample collection was 10.8±4.8
years (range 1–21 years). There was no statistically significant
difference between SS and controls with regard to the age
at which blood was sampled (Wilcoxon rank-sum test,
P value¼ 0.216) or sex (Chi-square (w2) test, P value¼ 0.345).

Genomic DNA was treated with sodium bisulfite and DNAm
was assessed using the Illumina Human InfiniumMethylation450

BeadChip. After filtering for polymorphic single-nucleotide
polymorphisms (SNPs) and nonspecific probes as previously
described9, we quantified DNAm at 424,586 CpG sites using beta
scores, which represent DNAm levels as a percentage (between 0
and 1). The significance of differential DNAm between SS and
control samples was assessed at each CpG using a non-parametric
Mann–Whitney U-test with a stringent Bonferroni correction for
multiple testing.

We identified genome-wide changes in DNAm in SS compared
with controls. Over 28,000 CpG sites survived stringent
Bonferroni correction at qo0.05 (Supplementary Fig. 1) demon-
strating a previously unrecognized effect of NSD1þ /� on
genome-wide DNAm. Next, we applied an additional filter to
this highly statistically significant set of CpGs by selecting the
subset of probes with 420% difference in average DNAm levels
between SS and controls (Supplementary Fig. 1). We identified
7,085 CpG sites distributed across the genome that we refer
to as the NSD1þ /� -specific signature; 7,038 CpG sites (99.3%)
demonstrated loss of DNAm (Supplementary Data 3), whereas
only 47 CpG sites (0.7%) showed a gain of DNAm in SS
compared with controls. Using unsupervised hierarchical
clustering of the DNAm data for the NSD1þ /� -specific
signature, all NSD1þ /� samples clustered as a distinct
group separate from controls (Fig. 1). When tested against
several potential confounding factors such as sex, age,
batch (Supplementary Data 3) and cell-type composition
(Supplementary Fig. 2, see Supplementary Methods for
details). the NSD1þ /� -specific signature retained its ability to
discriminate SS from control samples.
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Figure 1 | DNA methylation signature associated with NSD1þ /�

mutations. Unsupervised hierarchical clustering of 72 samples using the

differentially methylated CpG sites comprising the NSD1þ /� -specific

signature is shown using Pearson correlation. Note that two patients

(A1208 and DL179067) harbour the same mutation in NSD1 at the end of

the gene (exon 22) and display slightly different DNA methylation changes

compared with the other SS patients. Orange indicates high DNA

methylation and blue indicates low DNA methylation. Pink bar represents

SS patients with NSD1 whole-gene deletion and truncating mutations. Blue

bar represents controls.
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Validation of the NSD1þ /� -specific signature. Using the
DNAm beta values at each CpG within the NSD1þ /� -specific
signature, we developed a predictive model that classifies new
subjects on the basis of their DNAm profile as either ‘SS’ or ‘not
SS’, using the SS score described in the Methods. We evaluated
the performance of the NSD1þ /� -specific signature using an
independent set of normal blood-derived DNAm data (n¼ 1,056
subjects) extracted from the Gene Expression Omnibus (GEO)
database (www.ncbi.nlm.nih.gov/geo/) (Supplementary Data 4).
Each of the 1,056 GEO samples received a negative SS score and
was classified as ‘not SS’ (Fig. 2), demonstrating 100% specificity
of the classification model. These results highlight the robustness
of the NSD1þ /� -specific signature as it overcame many sources
of variation (sex, age, batch, DNA isolation methods, cell-type
composition) introduced by processing different cohorts in dif-
ferent laboratories around the world.

We then tested the sensitivity of the SS score to predict the
pathogenicity of NSD1 mutations using a replication cohort of SS
cases with known pathogenic NSD1 mutations (n¼ 19) from
Hong Kong (Supplementary Data 5). Each of these patients
received a positive SS score (Fig. 2) demonstrating a sensitivity of
100%.

As DNAm can be tissue and cell-type specific, we tested
fibroblast-derived DNA from three SS patients with truncating
mutations in NSD1 in comparison to four control fibroblast
samples. Using hierarchical clustering and the NSD1þ /� -specific
signature derived from blood to assess the fibroblast DNAm data,
the three SS fibroblast samples could be clearly distinguished
from controls (Fig. 3). Despite the small size of the available
fibroblast data set, these results demonstrate that the

NSD1þ /� -specific signature is robust even in the context of
cell-type-specific DNAm profiles.

To further assess the specificity of the NSD1þ /� -specific
signature, we used it to analyse the DNAm profiles of eight
patients with a clinical diagnosis of Weaver syndrome
(OMIM 277590) and confirmed mutations in EZH2 (refs 10,11;
Supplementary Data 6). All Weaver syndrome patients with
EZH2þ /� mutations received a strongly negative SS score
(between � 0.151 and � 0.105) and were therefore classified
confidently as ‘not SS’ (Fig. 2). The fact that the NSD1þ /� -
specific signature allows the molecular distinction of two
clinically overlapping overgrowth syndromes provides further
evidence for the robust specificity of the NSD1þ /� -specific
signature.
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Figure 2 | Testing the sensitivity and the specificity of the NSD1þ /�

DNAm signature. Using 19 SS and 53 healthy subjects from the discovery

cohort (labelled as ‘primary’), we generated the median-methylation

profiles of SS and control, respectively, on the CpG sites comprising the

NSD1þ /� -specific signature. We then estimated the specificity of these

profiles on a validation set of GEO blood samples (n¼ 1,056, blue dots),

all of which were more similar to the control profile (specificity 100%).

We also estimated the sensitivity on a separate SS validation set (n¼ 19,

magenta dots), all of which were more similar to the SS profile (100%

sensitivity). Similarity was computed as the Pearson correlation to either

the SS or the control DNAm profile. Out of 16 missense samples (green

squares), 9 classify with SS and 7 with controls. Also shown are Weaver

patients with EZH2 mutations (orange triangles) as well as the classification

of the primary 53 controls (dark blue squares) and 19 SS (light magenta

squares) used in the derivation of the NSD1þ /� -specific signature.
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Mutation variants of unknown significance. The interpretation
of non-synonymous variants (variants of unknown significance or
VOUS) represents a significant challenge in the clinical setting.
Several different pathogenicity prediction algorithms have been
developed to assist in the interpretation of VOUS; however these
tools often provide incongruent results12.

To investigate the utility of the NSD1þ /� -specific signature
to functionally classify NSD1 VOUS, DNA samples from
16 individuals with missense mutations in NSD1 (6 from the
discovery cohort and 10 from the validation cohort) were tested
in a blinded fashion. As shown in Fig. 2, the NSD1þ /� -specific
signature allowed clear classification of VOUS as pathogenic or
benign; 9/16 samples received positive SS scores clustering with
the NSD1þ /� pathogenic variants; these mutations were
classified as pathogenic. The remaining seven samples received
negative SS scores, clustering with the control group; these
mutations were classified as benign variants.

To further evaluate the efficacy of the DNAm signature as a
tool to classify NSD1 VOUS as benign or pathogenic, we
compared the congruence of results from DNAm SS scores with
expert review of the clinical phenotype. Two highly experienced
clinical geneticists (RW and DC), who were blinded to the
molecular data, reviewed clinical information and photos.
Patients were classified into one of three phenotypic categories:
(1) typical SS, (2) possible SS and (3) unlikely SS. For the
discovery cohort, there was 100% concordance (6/6) for the
clinical classification between reviewers. Four patients were
categorized as typical SS, all of whom had the DNAm signature.
Two patients were categorized as unlikely SS, neither of whom
had the signature (Fig. 4, Table 1 and Supplementary Data 7).

For the validation cohort, only 5 out of 10 patients had
photographs and medical records available that met our criteria
for review; the clinicians’ assessments were again 100%
concordant. Two of the patients were categorized by both
clinicians as unlikely SS; these patients did not have the
methylation signature. Two of the patients were categorized by
both clinicians as typical SS; these patients did have the
methylation signature. One patient with the methylation
signature was categorized by both clinicians as possible SS.

We also compared the interpretation of NSD1 VOUS
(16 missense variants) using the DNAm signature versus
five independent prediction algorithms, namely PolyPhen-2
(ref. 13; http://genetics.bwh.harvard.edu/pph2/), Mutation Assessor
(http://mutationassessor.org)14, SIFT (http://sift-dna.org)15,
Mutation Taster (http://www.mutationtaster.org)16 and PMut
(http://mmb.irbbarcelona.org/PMut/)17. As shown in Table 1, the
presence of the NSD1þ /� -specific signature and positive SS
scores were in agreement with the pathogenicity of the variants
predicted by four out of five prediction algorithms. In contrast,
negative SS scores were only in agreement with PolyPhen-2 and
Mutation Assessor. Taken together, these data demonstrate
that prediction of pathogenicity using the NSD1þ /� -specific
signature is more congruent with diagnostic classification by
expert clinicians in comparison with the majority of the currently
available prediction algorithms.

We propose that our specific genome-wide DNAm signature
for pathogenic NSD1 mutations can be utilized as a novel
epigenomic diagnostic tool that will facilitate the classification of
VOUS in NSD1 as benign or pathogenic variants.

Functional significance of the SS classification signature.
Finally, we investigated the DNAm classification signature
of NSD1þ /� for its potential to elucidate the molecular
pathophysiology of SS. Analysis of the genomic locations of the
CpG sites in the NSD1-specific signature showed that CpGs were
over-represented in enhancers, DNase hypersensitive sites,
reprogrammed differentially methylated regions (RDMR) and
CpG island shores (defined as 0 to 2 kb upstream of CpG island),
and were under-represented in regions overlapping promoters
and CpG islands (Fig. 5 and Supplementary Data 10). These
findings correlate with one previous observation that NSD1
associates primarily within a region B1,200 bp upstream of gene
targets such as the bone-morphogenetic protein BMP4 start site6.
However, our data suggest that NSD1 may have multiple
functions depending on the genomic locus and the temporal/
spatial location in development—specifically that NSD1 binds
regulatory regions that are required for early embryonic
development as also reflected by the embryonic lethality at
E10.5 of the Nsd1 null mouse18.

To identify the biological processes and molecular functions
most enriched within our data set, we analysed the 2,167 unique
genes that overlapped the NSD1þ /� -specific signature using
DAVID (http://david.abcc.ncifcrf.gov)19. The results demonstrate
enrichment for genes with roles in cellular morphogenesis and
differentiation, as well as neuronal differentiation/axonogenesis
and cell adhesion/cell signalling (Benjamini–Hochberg corrected
qo0.05) (Fig. 6 and Supplementary Data 8). This enrichment in
neural and cellular development pathways reflects the cardinal
features of SS (that is, overgrowth and developmental delay) and
validates the utility of the DNAm signature to elucidate the
functional, biological and molecular impact of NSD1 pathogenic
variants.

We also used GREAT (http://great.stanford.edu)20 to directly
analyse the 7,085 CpGs within the classification signature,
comparing them to the initial 424,586 CpGs in our data set in
the context of broader functionally annotated regions (up to

a

b

Figure 4 | Photographs of two patients carrying NSD1 missense variants.

(a) Patient (DL136303) with a missense mutation of uncertain significance,

clinical presentation characteristic of Sotos syndrome and a positive SS

score based on our analysis. (b) Patient (DL181344) with a missense

mutation of uncertain significance, clinical presentation that is not

characteristic of Sotos syndrome and a negative SS score based on our

analysis. Specific consent to publish facial photographs was obtained

for the two patients.
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1 Mbp extension from the nearest genes). Functional categories
related to embryonic development, including neurodevelopment,
were again predominant among the detected enrichment patterns
(Supplementary Data 9).

Discussion
We have identified a novel, robust DNAm signature specifically
associated with pathogenic NSD1 gene mutations, which has the
potential to be utilized as a functional molecular test to assess
VOUS in NSD1. This study will set the stage for an
unprecedented new field of epigenetic diagnostic testing where
scientists and clinicians will harness the power of the methylome
to unravel the pathogenicity of VOUS. We expect that this
approach will be particularly valuable with regard to genetic
testing for a variety of overgrowth disorders particularly as
mutations in additional epigenetic regulators, histone-lysine
N-methyltransferase (SETD2) (ref. 21) and DNA methyl-
transferase 3 (DNMT3A)22, have recently been reported to
cause distinct overgrowth syndromes.

Our data strongly suggest that there is important crosstalk
between histone modifications and DNAm. Although there are
currently limited data regarding the mechanisms by which this
occurs, one study of NSD1 loss of function supports the concept
of crosstalk between DNAm, histone modifications and gene
expression. Specifically, Berdasco et al.23 report changes in
histone modifications and transcription at one genomic locus in
tumours following epigenetic silencing of NSD1 as well as one
lymphoblast cell line from a SS individual23. This study did not,
however, examine genome-wide DNAm. To pursue our interest
in the mechanisms by which germline NSD1 loss-of-function
mutations impact the DNA methylome, we are currently
establishing a developmental model system to study NSD1 in
induced pluripotent stem (iPS) cells. We anticipate that these
studies will further elucidate the mechanisms by which
interactions between histone modifications and DNAm drive
gene expression.

Table 1 | Comparison between different prediction algorithms and NSD1þ /� -specific signature for missense mutations.

Sample ID Protein
change

Inheritance NSD1
DNAm

signature

Sotos
syndrome

score

Clinical
impression
(RW and
DC)

PolyPhen-2
prediction
effect
(score)

SIFT (score) Mutation
assessor:
functional
impact (score)

PMut
prediction
(reliability)

Mutation
taster
(P-value)

HK-5474 p.Cys1606Tyr De novo Yes 0.096 Photos not
available

Probably
damaging (1)

Deleterious (0) Medium (3.37) Pathological (9) Disease
causing (1)

HK-11693 p.Pro1726Arg De novo Yes 0.122 Photos not
available*

Probably
damaging (1)

Deleterious (0) High (3.61) Pathological (7) Disease
causing (1)

HK-5581 p.Val1968Ala De novo Yes 0.016 Typical
Sotos

Probably
damaging (1)

Deleterious (0) High (4.11) Neutral (1) Disease
causing (1)

HK-3326 p.Tyr1997Cys De novo Yes 0.089 Possible
Sotos

Probably
damaging (1)

Deleterious (0) High (4.75) Pathological (8) Disease
causing (1)

HK-435 p.Arg2017Trp De novo Yes 0.131 Typical
Sotos

Probably
damaging (1)

Deleterious (0) High (4.89) Pathological (9) Disease
causing (1)

DL136303 p.Ala1927Pro Unknown Yes 0.110 Typical
Sotos

Probably
damaging (1)

Deleterious (0) Medium (3.12) Pathological (3) Disease
causing (1)

DL208122 p.Cys2146Ser De novo Yes 0.077 Typical
Sotos

Probably
damaging (1)

Deleterious (0) High (3.89) Pathological (1) Disease
causing (1)

DL199861 p.Cys2138Arg De novo Yes 0.068 Typical
Sotos

Probably
damaging (1)

Deleterious (0) High (3.89) Pathological (8) Disease
causing (1)

DL159025 p.Arg2005Gly De novo Yes 0.148 Typical
Sotos

Probably
damaging (1)

Deleterious (0) Medium (2.35) Pathological (6) Disease
causing (1)

DL181344 p.Asn1650Ser Unknown No �0.141 Unlikely
Sotos

Benign (0) Tolerated (0.09) Low (1.08) Pathological (0) Disease
causing (0.9)

HK-9776 p.Asn357Ser Mat.
inheritance

No �0.122 Unlikely
Sotos

Benign (0.1) Tolerated (0.73) Neutral (�0.81) Neutral (5) Polymorphism
(0.9)

HK-12366 p.Asn1149Ser Mat.
inheritance

No �0.131 Photos not
available

Benign (0) Tolerated (0.28) Neutral (0.20) Neutral (2) Polymorphism
(1)

HK-6943 p.Pro2225Gln Mat.
inheritance

No �0.139 Photos not
available

Benign (0) Tolerated (0.14) Neutral (0.55) Neutral (0) Polymorphism
(0.9)

HK-14867 p.Gln2474Arg De novow No �0.121 Unlikely
Sotos

Benign (0) Deleterious (0.01) Neutral (0.34) Neutral (1) Polymorphism
(1)

HK-11767 p.Lys1786Arg Mat.
inheritance

No �0.149 Photos not
available

Benign (0.2) Deleterious (0) Neutral (0.36) Neutral (8) Disease
causing (0.9)

DL73286 p.Ser1241Thr Mat.
inheritance

No �0.137 Unlikely
Sotos

Benign (0) Tolerated (0.14) Neutral (0.55) Neutral (8) Polymorphism
(1)

Sample IDs representing the discovery cohort are in bold and the remaining samples are from the validation cohort.
Single-nucleotide variants were classified on the basis of DNA methylation data, clinical assessment and mutation databases. Each variant was classified by each of the mutation effect prediction
algorithms independently.
*Photos available, but did not meet inclusion criteria for clinical review.
wBoth parents tested negative for the variant in NSD1. Also, non-paternity was ruled out in this de novo variant case.
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Figure 5 | Genomic distribution of the NSD1þ /� -specific CpG sites. Bar

chart representing the percentage distribution of the CpG sites according to

genomic annotations extracted from the Illumina 450K array annotation

file. We compared the distribution of the CpGs between the data set

(424,586 CpGs) and NSD1þ /� CpGs (7,085 CpGs) for the regulatory

feature group, relation to CpG island and other functional categories such

as overlapping enhancer region, DNase hypersensitive sites (DHS) and type

of differentially methylated regions (Reprogrammed DMR (RDMR), cancer

DMR (cDMR), other DMR) in addition to relation to RefSeq group

annotation. The numbers at the top of each bar represent the percentage

distribution of CpGs within each category. N refers to north and S refers

to south.
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Finally, the genome-wide DNAm alterations identified by the
NSD1þ /� -specific signature represent novel, powerful and
highly specific targets that can be used to elucidate the molecular
pathophysiology of SS and to guide the development of future
targeted therapies. This approach could be used in a broader
context to study the downstream functional effects of loss-of-
function mutations of regulators of the epigenome in human
disease model systems.

Methods
DNA methylation analyses. We profiled a total of 112 samples from 114
unique individuals (57 with NSD1 mutations or single-nucleotide variants and
57 controls). Informed consent was obtained from parents of all the participants
and assent was obtained from participants, as appropriate for age. The study was
approved by the Research Ethics Board at the Hospital for Sick Children. Most
DNA samples were derived from blood except for seven samples (three with NSD1
mutations and four controls) for which DNA was derived from skin fibroblasts.
DNA samples were sodium bisulfite converted using the Qiagen EZ DNA
Methylation kit (Qiagen, Valencia, CA), according to the manufacturer’s protocol.
Modified genomic DNA was then processed and analysed on the Infinium
HumanMethylation450 BeadChip from Illumina (Illumina 450K) according to
the manufacturer’s protocol. The distribution of the samples on the arrays was
randomized for both cases and controls but not for age and gender. Chi-square and
Wilcoxon rank-sum tests were used to compare gender and age distributions,
respectively between SS and control discovery cohorts.

Normalization and quality controls. We used the GenomeStudio software from
Illumina to process the raw intensity data (IDAT files) for all the 114 samples.
Control normalization and background subtraction included in GenomeStudio was
used to generate DNAm profiles, or beta values, for each sample at every CpG site
from the B485,000 CpG sites. All the 114 samples passed the quality controls
measures and had over 485,000 CpG sites detected at a detection P value o0.01.

Probe cross reactivity and polymorphic sites. We excluded probes containing
SNPs, that is, whenever the CpG sites were polymorphic at the cytosine or the
guanine base. Infinium I probes were excluded if there was a SNP at the position
where single-base extension occurs. Also excluded were CpG sites for which SNPs
were located within 10 bases of the query site where single-base extension occurs.
SNPs were also excluded if there was an allele frequency of at least 1% (19,418 sites
(4.0%)) or an allele frequency of at least 5% (10,825 sites (2.2%); for more details,
see Chen et al.)9. In addition, we excluded CpG sites if their probe sequences
aligned to multiple positions with Z90% identity (see Chen et al.,9 for additional

details). After removing probes with missing values or detection P values 40.01
and nonspecific probes, the final data set contained 424,586 probes.

Differential DNA methylation analysis. To identify the differentially methylated
CpG sites, we compared the DNAm distributions for Sotos cases versus controls at
each CpG site. To account for the influence of the family relationships among three
of the SS patients, we formed three separate testing trials, each time combining 16
non-familial Sotos cases with only one family member. The resulting set of 17 SS
patients was compared with 53 controls for each of the 424,586 available CpG sites,
using a non-parametric Mann–Whitney U-test (implemented in R, scripts available
upon request). A stringent Bonferroni correction for multiple testing was applied to
the results in each trial. To ensure robust results, we retained only the CpG sites
that were significant at the confidence level a¼ 0.05 in all the three trials, that is,
with any choice of the family representative among the Sotos patients. As many as
28,458 CpG sites satisfied this criterion. Finally, we applied an additional effect-size
criterion requiring at least 20% difference in average DNAm between the Sotos and
the control groups in each of the three trials. The latter filter was performed to
ensure inclusion of CpGs with differences that were the most biologically mean-
ingful. This filter reduced the NSD1 signature to 7,085 CpG sites, which were then
selected for further characterization including the development of an independent
classification model for cohorts of controls and SS cases, as well as for specificity
and sensitivity testing.

Sotos syndrome score and classification model. We developed a simple
classification model on the basis of the NSD1þ /� -specific signature in blood.
At each of the 7,085 NSD1þ /� -specific signature CpGs, a median DNAm level
was computed across all the 19 SS patients in the original Discovery cohort.
This resulted in a reference profile for the NSD1þ /� Sotos DNAm levels over the
NSD1þ /� -specific signature CpGs, which was robust to outliers. Similarly a robust
median-DNAm reference profile for the 53 healthy control subjects was created.
The classification of each new DNAm sample was based on extracting a vector Bsig

of its DNAm values in the NSD1þ /� -specific signature CpGs, and comparing Bsig

to the two reference profiles computed above. A Sotos Syndrome Score was
defined as:

SS score Bð Þ ¼ r Bsig; SS profile
� �

� r Bsig; control profile
� �

ð1Þ

where r is the Pearson correlation coefficient. A simple classification model was
developed based on scoring each new DNAm sample using the SS score: a blood
sample with a positive SS score is more similar to the SS reference profile based on
the NSD1þ /� -specific signature CpGs, and is therefore classified as ‘‘SS’’; whereas
a sample with a negative SS score is more similar to the normal-blood reference
profile, and is classified as ‘‘not SS’’. The classification is implemented in R (scripts
available upon request).
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Figure 6 | Enrichment analysis of the genes overlapping NSD1þ /� DNAm signature. We identified 2,167 unique genes that overlap the CpGs

comprising the NSD1þ /� -specific signature and used DAVID (http://david.abcc.ncifcrf.gov) to identify the biological processes most enriched within

our data set. Over-represented functional categories were visualized in Cytoscape (http://www.cytoscape.org) using the Enrichment Map plugin

(www.baderlab.org/Software/EnrichmentMap). Network nodes represent statistically significant Gene Ontology—Biological Process terms

(Benjamini-corrected P value o0.05), with node size proportional to the number of SS-associated genes annotated for each term. Edges represent overlaps

between these gene sets, with edge thickness proportional to their Jaccard index. The results demonstrate enrichment in functional terms that relate to

cellular morphogenesis, neuronal development and cellular differentiation, involving highly overlapping subsets of genes. In addition, we identified an

enrichment of genes with roles in organ development, ion transport as well as embryonic developmental pathways.
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