1,318 research outputs found

    Plastic Deformation of 2D Crumpled Wires

    Full text link
    When a single long piece of elastic wire is injected trough channels into a confining two-dimensional cavity, a complex structure of hierarchical loops is formed. In the limit of maximum packing density, these structures are described by several scaling laws. In this paper it is investigated this packing process but using plastic wires which give origin to completely irreversible structures of different morphology. In particular, it is studied experimentally the plastic deformation from circular to oblate configurations of crumpled wires, obtained by the application of an axial strain. Among other things, it is shown that in spite of plasticity, irreversibility, and very large deformations, scaling is still observed.Comment: 5 pages, 6 figure

    Optimal Packings of Superballs

    Full text link
    Dense hard-particle packings are intimately related to the structure of low-temperature phases of matter and are useful models of heterogeneous materials and granular media. Most studies of the densest packings in three dimensions have considered spherical shapes, and it is only more recently that nonspherical shapes (e.g., ellipsoids) have been investigated. Superballs (whose shapes are defined by |x1|^2p + |x2|^2p + |x3|^2p <= 1) provide a versatile family of convex particles (p >= 0.5) with both cubic- and octahedral-like shapes as well as concave particles (0 < p < 0.5) with octahedral-like shapes. In this paper, we provide analytical constructions for the densest known superball packings for all convex and concave cases. The candidate maximally dense packings are certain families of Bravais lattice packings. The maximal packing density as a function of p is nonanalytic at the sphere-point (p = 1) and increases dramatically as p moves away from unity. The packing characteristics determined by the broken rotational symmetry of superballs are similar to but richer than their two-dimensional "superdisk" counterparts, and are distinctly different from that of ellipsoid packings. Our candidate optimal superball packings provide a starting point to quantify the equilibrium phase behavior of superball systems, which should deepen our understanding of the statistical thermodynamics of nonspherical-particle systems.Comment: 28 pages, 16 figure

    No peaks without valleys: The stable mass transfer channel for gravitational-wave sources in light of the neutron star-black hole mass gap

    Full text link
    Gravitational-wave (GW) detections are starting to reveal features in the mass distribution of double compact objects. The lower end of the black hole (BH) mass distribution is especially interesting as few formation channels contribute here and because it is more robust against variations in the cosmic star formation than the high mass end. In this work we explore the stable mass transfer channel for the formation of GW sources with a focus on the low-mass end of the mass distribution. We conduct an extensive exploration of the uncertain physical processes that impact this channel. We note that, for fiducial assumptions, this channel reproduces the peak at ∼9M⊙\sim9 \mathrm{M_{\odot}} in the GW-observed binary BH mass distribution remarkably well, and predicts a cutoff mass that coincides with the upper edge of the purported neutron star BH mass gap. The peak and cutoff mass are a consequence of unique properties of this channel, namely (1) the requirement of stability during the mass transfer phases, and (2) the complex way in which the final compact object masses scale with the initial mass. We provide an analytical expression for the cutoff in the primary component mass and show that this adequately matches our numerical results. Our results imply that selection effects resulting from the formation channel alone can provide an explanation for the purported neutron star--BH mass gap in GW detections. This provides an alternative to the commonly adopted view that the gap emerges during BH formation.Comment: Accepted for publication in ApJ associated code is available at https://github.com/LiekeVanSon/LowMBH_and_StableChanne

    Neoadjuvant chemoradiation compared to neoadjuvant radiation alone and surgery alone for Stage II and III soft tissue sarcoma of the extremities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neoadjuvant chemoradiation (NCR) prior to resection of extremity soft tissue sarcoma (STS) has been studied, but data are limited. We present outcomes with NCR using a variety of chemotherapy regimens compared to neoadjuvant radiation without chemotherapy (NR) and surgery alone (SA).</p> <p>Methods</p> <p>We conducted a retrospective chart review of 112 cases.</p> <p>Results</p> <p>Treatments included SA (36 patients), NCR (39 patients), and NR (37 patients). NCR did not improve the rate of margin-negative resections over SA or NR. Loco-regional relapse-free survival, distant metastases-free survival, and overall survival (OS) were not different among the treatment groups. Patients with relapsed disease (OR 11.6; p = 0.01), and tumor size greater than 5 cm (OR 9.4; p = 0.01) were more likely to have a loco-regional recurrence on logistic regression analysis. Significantly increased OS was found among NCR-treated patients with tumors greater than 5 cm compared to SA (3 year OS 69 vs. 40%; p = 0.03). Wound complication rates were higher after NCR compared to SA (50 vs. 11%; p = 0.003) but not compared to NR (p = 0.36). Wet desquamation was the most common adverse event of NCR.</p> <p>Conclusions</p> <p>NCR and NR are acceptable strategies for patients with STS. NCR is well-tolerated, but not clearly superior to NR.</p

    A Viscoelastic model of phase separation

    Full text link
    We show here a general model of phase separation in isotropic condensed matter, namely, a viscoelastic model. We propose that the bulk mechanical relaxation modulus that has so far been ignored in previous theories plays an important role in viscoelastic phase separation in addition to the shear relaxation modulus. In polymer solutions, for example, attractive interactions between polymers under a poor-solvent condition likely cause the transient gellike behavior, which makes both bulk and shear modes active. Although such attractive interactions between molecules of the same component exist universally in the two-phase region of a mixture, the stress arising from attractive interactions is asymmetrically divided between the components only in dynamically asymmetric mixtures such as polymer solutions and colloidal suspensions. Thus, the interaction network between the slower components, which can store the elastic energy against its deformation through bulk and shear moduli, is formed. It is the bulk relaxation modulus associated with this interaction network that is primarily responsible for the appearance of the sponge structure peculiar to viscoelastic phase separation and the phase inversion. We demonstrate that a viscoelastic model of phase separation including this new effect is a general model that can describe all types of isotropic phase separation including solid and fluid models as its special cases without any exception, if there is no coupling with additional order parameter. The physical origin of volume shrinking behavior during viscoelastic phase separation and the universality of the resulting spongelike structure are also discussed.Comment: 14 pages, RevTex, To appear in Phys. Rev

    Clinical risk factors and atherosclerotic plaque extent to define risk for major events in patients without obstructive coronary artery disease: the long-term coronary computed tomography angiography CONFIRM registry.

    Get PDF
    AimsIn patients without obstructive coronary artery disease (CAD), we examined the prognostic value of risk factors and atherosclerotic extent.Methods and resultsPatients from the long-term CONFIRM registry without prior CAD and without obstructive (≥50%) stenosis were included. Within the groups of normal coronary computed tomography angiography (CCTA) (N = 1849) and non-obstructive CAD (N = 1698), the prognostic value of traditional clinical risk factors and atherosclerotic extent (segment involvement score, SIS) was assessed with Cox models. Major adverse cardiac events (MACE) were defined as all-cause mortality, non-fatal myocardial infarction, or late revascularization. In total, 3547 patients were included (age 57.9 ± 12.1 years, 57.8% male), experiencing 460 MACE during 5.4 years of follow-up. Age, body mass index, hypertension, and diabetes were the clinical variables associated with increased MACE risk, but the magnitude of risk was higher for CCTA defined atherosclerotic extent; adjusted hazard ratio (HR) for SIS &gt;5 was 3.4 (95% confidence interval [CI] 2.3-4.9) while HR for diabetes and hypertension were 1.7 (95% CI 1.3-2.2) and 1.4 (95% CI 1.1-1.7), respectively. Exclusion of revascularization as endpoint did not modify the results. In normal CCTA, presence of ≥1 traditional risk factors did not worsen prognosis (log-rank P = 0.248), while it did in non-obstructive CAD (log-rank P = 0.025). Adjusted for SIS, hypertension and diabetes predicted MACE risk in non-obstructive CAD, while diabetes did not increase risk in absence of CAD (P-interaction = 0.004).ConclusionAmong patients without obstructive CAD, the extent of CAD provides more prognostic information for MACE than traditional cardiovascular risk factors. An interaction was observed between risk factors and CAD burden, suggesting synergistic effects of both

    Modelling the cost-effectiveness of public awareness campaigns for the early detection of non-small-cell lung cancer

    Get PDF
    Background: Survival rates in lung cancer in England are significantly lower than in many similar countries. A range of Be Clear on Cancer (BCOC) campaigns have been conducted targeting lung cancer and found to improve the proportion of diagnoses at the early stage of disease. This paper considers the cost-effectiveness of such campaigns, evaluating the effect of both the regional and national BCOC campaigns on the stage distribution of non-small-cell lung cancer (NSCLC) at diagnosis. Methods: A natural history model of NSCLC was developed using incidence data, data elicited from clinical experts and model calibration techniques. This structure is used to consider the lifetime cost and quality-adjusted survival implications of the early awareness campaigns. Incremental cost-effectiveness ratios (ICERs) in terms of additional costs per quality-adjusted life-years (QALYs) gained are presented. Two scenario analyses were conducted to investigate the role of changes in the ‘worried-well’ population and the route of diagnosis that might occur as a result of the campaigns. Results: The base-case theoretical model found the regional and national early awareness campaigns to be associated with QALY gains of 289 and 178 QALYs and ICERs of d13 660 and d18 173 per QALY gained, respectively. The scenarios found that increases in the ‘worried-well’ population may impact the cost-effectiveness conclusions. Conclusions: Subject to the available evidence, the analysis suggests that early awareness campaigns in lung cancer have the potential to be cost-effective. However, significant additional research is required to address many of the limitations of this study. In addition, the estimated natural history model presents previously unavailable estimates of the prevalence and rate of disease progression in the undiagnosed population
    • …
    corecore